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The possible correlation between a state of flow in a team and neural synchronisation between
the individuals in the team is a fascinating research topic. However, it is essential that the an-
alytical technique to quantify neural synchronisation does not give false positives. This paper
explores the mathematics behind the Phase Locking Index and gives an argumentation why
this technique in its current form could lead to false positives. A change in the mathematical
approach is proposed, such that a Neural Synchronisation Vector is obtained that can avoid this
type of error.
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Introduction

Cooperation is an essential part of the human existence.
We are constantly tuning in to others, anticipating their ac-
tions and adapting our own. This can be as simple as partic-
ipating in traffic or waiting in a queue and as complex as the
coordination of international projects. If we want our actions
to be optimally aligned, we need everyone in the team to be
in tune with each other. While a high quality of teamwork
might be most directly visible in the performance of sports
teams, dancers and musician it might be even more crucial in
places like the boardrooms of large organisations or the con-
trolrooms of crucial technical operations like powerplants or
air traffic control. The need to improve cooperation, com-
munication and flow between teams of people has lead to a
multitude of books, workshops, trainers, coaches and ther-
apists that promise to improve these things. What actually
defines good teamwork is often considered to be something
subjective. People have the feeling they are “in sync” with
each other, or can reach a certain level of “flow”, but these
states are often considered to have some kind of magical aura
that can not be measured. And even though there are attempts
to objectify this state through psychological models or even
mathematical looking formulas that describe how we should
combine certain psychological qualities in order to maximize
a state of creative flow when working together (Nakamura
& Csikszentmihalyi, 2014; Csikszentmihalyi, 2015; Gratton,
2007), none of these are able to objectively quantify team-
work. While this does not necessarily have to be a prob-
lem and might even the preferred option for some people or
contexts, it can be useful to complement the subjective as-
sessment of the state of flow with an objective quantification.
First, objective feedback about the quality of teamwork could
reinforce good practice in the same way neurofeedback for

individuals can help them to improve traits like concentra-
tion (Arns, de Ridder, & Strehl, 2009; Arns, Drinkenburg, &
Leon Kenemans, 2012; Fingelkurts, Fingelkurts, & Kallio-
Tamminen, 2015; Hammond, 2007; Surmeli & Ertem, 2010).
Secondly, it can be difficult to “see the water you are swim-
ming in as a fish” and we do not always have easy access to
an outsider that can help us reflect on the quality of our in-
teraction. Thirdly, we can enjoy learning about the extend to
which our brains act like coupled oscillators for the inherent
joy of learning itself. We can find the phenomena of cou-
pled oscillators throughout physics and biology, for exam-
ple in the movement of pendulums or planets and inside our
body as the pacemaker cells of the heart or our spinal cord
that controls breathing, running and chewing. But it is also
common to find coupled oscillators between organisms, for
example in the chirping of crickets or the synchronous flash-
ing of fireflies as illustrated in figure 1 (Strogatz & Stewart,
1993). The first section of this paper will explore hyperscan-
ning studies that aim to correlate neural synchronisation with
teamwork. Possible pitfalls in the research designs are dis-
cussed, followed by a selection of mathematical techniques
used to quantify neural synchronisation. The second section
argues under which conditions the quantification of neural
synchronisation with the Phase Locking Index could lead to
false positives and suggests the alternative mathematical ap-
proach of the Neural Synchronisation Vector in order to avoid
this type of error.

Hyperscanning studies

Research designs

The analysis of the brainsignals of more than one per-
son at a time is called ‘hyperscanning’ and can be done
with methods like fMRI or EEG (Sänger, Lindenberger, &
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Figure 1. Synchronous flashing fireflies. Image Credit: Radim Schreiber

Müller, 2011). This paper will mainly focus on the anal-
ysis of EEG signals, because of the higher time-resolution
as compared to fMRI and the easier access to EEG devices
which makes the research easier to execute. In the last decade
there have been several studies that used the hyperscanning
paradigm to research the hypothesis that phase synchroni-
sation between brains is a neural substrate for teamwork.
Neural synchronisation during teamwork is dominantly mea-
sured by the Phase Locking Index (PLI), an analytical tech-
nique that which will be discussed in depth in the next sec-
tion. A significant increase of the PLI and similar measures
have been found under a wide variety of research designs
including the formation of spontaneous leader-follower pairs
during group discussion (Shi et al., 2015), joint attention in
a visual search task (Szymanski et al., 2017), cooperation
on a puzzle task (Cha & Lee, 2018), spontaneous synchro-
nisation of hand movements (Dumas, Nadel, Soussignan,
Martinerie, & Garnero, 2010; Delaherche, Dumas, Nadel,
& Chetouani, 2015), the degree of cooperation between pi-
lots in different phases of a flight (Toppi et al., 2016), gui-
tarists engaged in musical improvisation (Müller, Sänger,
& Lindenberger, 2013) and guitarists playing melodies to-
gether (Lindenberger, Li, Gruber, & Müller, 2009; Sänger,
Müller, & Lindenberger, 2012). While this is a wide spec-
trum of settings in which significant results are measured,
some of these research designs can be critized for the lack of
proper control conditions where the social aspect is missing

while the aspects of perceptual input and motor output are
kept constant (Szymanski et al., 2017). After all, it might be a
very real possiblity that synchronised hand movements or si-
multaneously playing the same music have a neural substrate
that is interpreted as neural synchronisation, while what is
actually measured is that people perform the same activity.
Possibly the most convincing design to counter this critique
is the research of Szymanski et al. (2017) that used joint at-
tention in a visual search task as the only independent vari-
able while keeping all other aspects like the visual input and
the physical activity of the participants constant. Another
question that surfaces when looking at the different research
designs is how to define teamwork and cooperation. Impro-
vising music together is a very different activity as compared
to solving a puzzle together, which in turn is very different
from making simultaneous hand movements. While this is
not necessarily a problem, we might be measuring very dif-
ferent phenomena and turn out to be generalising over activ-
ities that should be considered as different findings.

Mathematical approaches to quantify neural synchroni-
sation

The EEG signal is an oscillating, electric signal that has
been measured by electrodes placed on the scalp since the
1930s (Bruch, 1959). To analyse this signal, a lot of different
analytical techniques have been used over the decades for
different purposes. An important aspect to consider when
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researching neural synchronisation is the mathematical ap-
proach that is used to quantify what is measured. There
are multiple approaches to analyse statistical properties of
coupled oscillators that make sense under different circum-
stances and are often originally developed for completely dif-
ferent situations than the EEG signal. The next section will
discuss three techniques used to quantify the EEG signal:
(i) power spectral analysis (ii) bispectrum analysis (iii) phase
locking index.

Power spectral analysis. Even though it is not possible
to quantify neural synchronisation with power spectral anal-
ysis, this approach will be discussed here shortly. This an-
alytical technique is interesting because the results of some
of the studies using this technique have implications for how
we approach neural synchronisation mathematically, as will
be make clear in the last part of the paper. Also, the lim-
itations of this analysis give us a perspective on what we
actually want to measure when considering neural synchro-
nisation. The power spectral analysis quantifies the ampli-
tude of the signal as a function of the frequency. The EEG
signal is an electric signal that oscilates, seemingly chaotic.
These chaotic oscillations measured at the skin are in fact
the summation of a large amount of individual neurons firing
inside the brain (Bruch, 1959; Ward, 2003; David & Friston,
2003). A first step towards analysing the signal is to decom-
pose it into a summation of sinusoids, known as a Fourier
series (Sigl & Chamoun, 1994). While we started with a
single but seemingly chaotic signal we now have multiple si-
nusoids of different frequencies. This representation makes
it much easier to study the signal. If we analyse the am-
plitudes of the sinusoids in the Fourier series as a function
of the frequency, we have created the power spectrum. It
is now possible to draw conclusions about which frequency
band is the most dominant in specific parts of the brain and
how the distribution of the frequencies changes over time
or correlates with states of mind and activities. This ap-
proach turned out to be able to show significant correlations
between a wide variety of things, for example the phases
of sleep (Aeschbach & Borbély, 1993; Cajochen, Foy, &
Dijk, 1999), depth of meditation (Fingelkurts et al., 2015;
Fingelkurts, Fingelkurts, & Kallio-Tamminen, 2016; Travis
et al., 2009), phenotyping of ADHD (Arns, Gunkelman,
Breteler, & Spronk, 2008; Arns et al., 2009, 2012; Arns,
Heinrich, & Strehl, 2014), predicting the effectivity of dif-
ferent types of medication for conditions like ADHD or de-
pression (John, Prichep, & Almas, 1992; Johnstone, Gunkel-
man, & Lunt, 2005), stages of problemsolving and creativ-
ity (Sandkühler & Bhattacharya, 2008; Dietrich & Kanso,
2010), creative ideation (Fink & Benedek, 2014), improvi-
sation dancing (Fink, Graif, & Neubauer, 2009), drawing or
claying (Kruk, Aravich, Deaver, & Debeus, 2014) and the
speed of acquisition of a second language (Prat, Yamasaki,
Kluender, & Stocco, 2016). These studies have established

the existence of a significant correlation between specific
states of mind and specific frequency bands in the EEG sig-
nal. The whole domain of neurofeedback exploits this cor-
relation by reinforcing people when they manage to get their
brains withing a certain frequency band which actually leads
to interesting results like a reduction in the symptoms of
ADHD (Hammond, 2007; Arns et al., 2014). From research
like this we can draw two important conclusions: (i) specific
states of mind and activities imply that the brain oscillates
more within specific frequency bands (ii) training the brain
to oscillate within certain frequency bands through neuro-
feedback induces certain states of mind. While the power
spectral analysis has become one of the dominant techniques
applied in the domain of neurofeedback (Hammond, 2007)
it also has some important limitations. One general prob-
lem is that it assumes that the EEG signal arises from a lin-
ear process and ignores possible interactions between com-
ponents of the signal, which could be problematic because
almost all biological systems show nonlinear behavior (Sigl
& Chamoun, 1994). In addition to this, the power spectral
analysis ignores all phase information in the signal. Because
only the amplitude of the sinusoids is taken into account, the
power spectral analysis can not discern between signals that
have a different phase or are synchronised. Because complex
functions of the brain require different parts from the brain
to cooperate, we can gain important additional information
about these processes when we include the phase synchroni-
sation in the analysis of the signal (Ward, 2003). There have
been different attempts to incorporate the phase information
of a signal into the analysis of the EEG signal.

Bispectral analysis. One apporach that takes the phase
information of the EEG into account is the bispectral analy-
sis, a type of analysis that was originally introduced by geo-
physicists to study phenomena like ocean waves, seismic ac-
tivity and sunspots (Sigl & Chamoun, 1994). The bispectral
analysis was intended to analyse one signal that is the re-
sult of different frequencies that interact in a nonlinear fash-
ion (Hagihira, Takashina, Mori, Mashimo, & Yoshiya, 2001;
Sigl & Chamoun, 1994). In order to do a bispectral analy-
sis the signal is first decomposed into a Fourier series that is
defined as:

X( f ) = 2/M
M−1∑
k=0

x(k)e−ik2π f (1)

where the samples of the signal x are denoted as x(k) for
k = {0, . . . ,M − 1} and where M are the total amount of sam-
ples in the segment of data. i is the complex number

√
−1,

f is a particular frequency component that can be described
as f ∈ F where F = {0, . . . , fs/2Hz}, and fs is the sam-
pling rate in samples per second (Sigl & Chamoun, 1994).
To compute the bispectrum, the signal is divided into epochs
and the Fourier transform of every epoch is computed. Then
every frequency fi ∈ F is combined with another frequency
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f j ∈ F to obtain the bispectrum of a couple fi, f j):

B( fi, f j) =

∣∣∣∣∣ L∑
n=1

Xn( fi)Xn( f j)Xn ∗ ( f1 + f j)
∣∣∣∣∣ (2)

where Xn ∗ ( fi + f j) is the complex conjugate of Xn( fi + f j),
the subscript n refers to the epoch number and Xn( f )o is the
Fourier transform of the n-th epoch with a total of L epochs.
The result of this analysis is a mapping of the combination
of two frequencies to a real number: F × F → R. One of
the successful applications of the bispectrum with the EEG
has been to correlate this measure to the depth of anesthe-
sia (Avidan et al., 2008; Sebel et al., 1997; Sigl & Chamoun,
1994; Liu, Singh, & White, 1996). Recently, the bispectrum
has been the proposed method in a hyperscanning study to
measure the quality of teamwork (Cha & Lee, 2018). I have
several points of critique on using the bispectrum analysis to
measure neural synchronisation. (i) The bispectrum analysis
is developed to be used on the Fourier transform of just one
signal. To use it to compare two signals, you would have to
modify the formula slightly. It is not clearly described how
(Cha & Lee, 2018) precisely did this. Two signals would pro-
duce two sets of frequencies F1 and F2 that would produce a
set of possible combinations F1×F1×F2×F2, which would
require a fivedimensional space if we would map these com-
binations to R. Somehow Cha and Lee (2018) managed to
reduce the combinations of these two signals to a single, re-
al-valued number as a function of the passing time. To judge
the significance of their approach, it should be clear how they
precisely did this. (ii) The bispectral analysis takes the ampli-
tude of the signal into account, which might give unexpected
results when we simply try to compare the amount to which
the phases of independent signals are synchronised. (iii) The
bispectral analysis is developed to show nonlinear couplings
between the components of one signal. It is not a simple task
to exactly understand what is going on when we apply this
technique to two signals, especially because the computation
involves a triple product, a complex conjugate and a fivedi-
mensional space to visualise the combination of two signals.
Even if it would be reproducable that the bispectral analysis
has a significant correlation with the level of teamwork, it is
hard to understand what we are measuring exactly and how
we should interpret such results.

Phase Locking Index. A much simpler and more direct
way of computing neural synchronisation is the Phase Lock-
ing Index (PLI) (Chavez, Le Van Quyen, Navarro, Baulac,
& Martinerie, 2003; Boon et al., 2009). Confusingly, this
technique is referred to by different authors as respectively
the "Mean Phase Coherence", "Phase Locking Value", "in-
tensity of the first Fourier mode of the Phase Distribution"
and "Phase Locking Index" (Boon et al., 2009). Because
there are slight differences between the authors in denoting
the mathematical formula, it takes quite some effort to iden-
tify whether the same formula has been used by two authors

under a different name, or if they actually use another tech-
nique. There is at least one case where an author compared
two studies and supposed two analytical techniques (namely,
the Phase Locking Index versus the Phase Locking Value)
were different techniques (Sänger et al., 2011), while they
actually are the same mathematical technique (Lindenberger
et al., 2009; Dumas et al., 2010; Boon et al., 2009). I will
adopt the nomenclature "Phase Locking Index" as it is used
by multiple authors (Boon et al., 2009; Sänger et al., 2011,
2012; Chavez et al., 2003; Stam, Nolte, & Daffertshofer,
2007; Lindenberger et al., 2009; Szymanski et al., 2017) and
I agree with Boon et al. (2009) that it reflects most precisely
the nature of the measure. To compute the PLI, we start with
a complex-valued signal c (like the Fourier transform of a
signal) and obtain the phase ϕ analytically:

ϕ ≡ Im(ln(c)) (3)

One advantage of using a complex-valued signal is that we
can represent a wave as a vector on the unit circle. This al-
lows for simple calculations with regards to the phase differ-
ences. For two signals c1 and c2 with fundamental frequen-
cies f1 and f2 such that f1 ≈ f2 holds, phase synchronisation
is defined as |ϕ1−ϕ2| < C, where C is some constant (Boon et
al., 2009; M. Rosenblum, Pikovsky, Kurths, Schäfer, & Tass,
2001). The intuitive idea behind this computation is very
straighforward: we take comparable frequencies and simply
investigate if their phases are close to each other. The am-
plitude of the signals is not taken into account and does not
influence the quantification of the synchronisation, which is
an intuitive way to look at the phenomena of synchronised
oscillations. If we want to know if two oscillators are cou-
pled, we normally don’t care about their amplitude to deter-
mine their level of synchronisation. The cyclic relative phase
is defined as:

Ψ ≡ (nϕ1 − mϕ2)mod2π (4)

If the two signals are unsynchronised, the phase differences
over a longer period of time will follow a uniform distribu-
tion on the unit circle. Any peak in the distribution of Ψ

can be understood as an indication of phase synchronisa-
tion (M. Rosenblum et al., 2001; Boon et al., 2009). This dis-
tribution can be quantified as the Phase Locking Index (PLI),
which is defined as:

γ ≡

∣∣∣∣∣〈eiψ[k]
〉

k

∣∣∣∣∣ (5)

where k = {1, . . . ,K} is a discrete time index, K is the to-
tal number of samples, 〈.〉k means the time average and i is
the complex number

√
−1. The variables n and m can be

any integer for the general purpose of calculating the phase
locking between coupled oscillators (M. Rosenblum et al.,
2000, 2001) but because we will only compare similar fre-
quencies between both Fourier series in our context we take
n = m = 1. When there is a strong synchronisation between
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the signals, γ will be close to one while it will be close to
zero if there is no synchronisation. This effect is obtained
by adding the complex vectors and taking their mean value.
A property of complex vectors is that they will cancel each
other out to the level that their phases are opposite. A uni-
form distribution of phase angles will thus lead to a vector
length close to zero.

An alternative approach

The possiblity of false positives

While the concept of phase locking as defined in equation
(5) might be sound in the general context of coupled oscilla-
tors and while the PLI is positively correlated with different
types of teamwork as defined under various research designs,
this section of the paper will argue why there is a good rea-
son to modify the equation when we want to measure neural
synchronisation. The current definition of equation (5) could
lead to false positives on neural synchronisation, because it
can not discriminate between the presence or absence of neu-
ral synchronisation under certain assumptions. These two
assumptions are: (I) specific states of mind imply a specific
frequency band and (II) Phase Stability.

States of mind imply a frequency band. One of the
previously mentioned conclusions from the research with the
power spectral analysis is that specific states of mind and
activities imply the brain to oscillate relatively more within
specific frequency bands. For example, let’s consider the re-
search done on drawing and clay scuplting by Kruk et al.
(2014) and on dancing by Fink et al. (2009). While the
participants were drawing, claying or dancing the research
found that they produced more waves in a specific frequency
band, namely the gamma frequency band which lies between
25 and 30 Hz. Participants will thus have a larger amount
of frequencies within the same bandwidth than before they
started the activity. This means that the similarity between
the distribution of frequencies in their power spectral anal-
ysis will increase, simply by performing a similar activity.
These two papers are particulary interesting, because their
research design is somewhat comparable to the designs that
intend to measure neural synchronisation. We could won-
der if those participants would have also shown neural syn-
chronisation while dancing or claying together, in addition to
having a similar power spectrum.

Phase Stability. For the second assumption, we need to
define the property of Phase Stability:

Φ ≡ ϕ(t0) − ϕ(tk) (6)

where ϕ(t) is the phase of the signal at time t, t0 is the start
time of the signal, k = {1/ f , . . . ,K/ f } is a discrete time index
in seconds with f the frequency of the signal, {1, . . . ,K} ∈ N
and K/ f the end time of the signal. If it holds that the distri-
bution of Φ follows a normal distribution with a mean µ ≈ 0

and a standard deviation σ < ε with ε a small threshold value
with regards to the unit circle, the signal has Phase Stability.
The definition of Phase Stability does not require any inter-
action between two signals. This means that a signal can
obtain Phase Stability independent of another signal, some-
thing that could possibly be caused by the introduction of an
activity that invokes a specific state of mind.

As we now have defined the necessary assumptions, let us
consider two cases A and B. Lets assume that participants
in both cases join an experiment where during the control
condition they have an arbitrary state of mind without a lot
of Phase Stability and during the test condition they shift to
a specific state of mind with increased Phase Stability. Un-
der assumption (I) we can conclude that shifting to a spe-
cific state of mind implies the brains of all participants shift
to a more similar distribution of frequencies as compared to
the control condition. This means that there will be more
overlapping frequencies that compared with the experimen-
tal condition. Now let’s assume that the difference between
the cases A and B is that in case A the two participants have
absolutely no interaction with each other and it is impossible
for them to reach neural synchronisation. Lets assume that in
case B the participants will reach complete neural synchroni-
sation. For the measurement of neural synchronisation to be
sound we would need to see that it is impossible to measure
neural synchronisation under condition A and that we can
discriminate it from case B that meets all the conditions for
neural synchronisation. If we would find neural synchroni-
sation under condition A we will consider this to be a false
positive.

In case A the complex-valued signals c1 and c2 of two ar-
bitraty participants will have a more similar distribution of
frequencies during testconditions because of assumption (I).
This leads to a larger chance of measuring overlapping fre-
quencies in the Fourier series of the signal that can be com-
pared between the two signals. At the same time they will
have an arbitrary nonzero difference between their phases,
because we assumed there is no neural synchronisation. The
resulting value of Ψ will thus be a arbitraty nonzero value
and result in a vector eiΨ that has a phase equal to the phase
difference between ϕ1 and ϕ2. Because we assumed Phase
Stability, computing the mean vector will result in a vector
with a length close to one and an arbitraty nonzero phase
angle. Because equation (5) only considers the length of the
vector, the value of γ will be close to one and thus indicate
neural synchronisation in condition A. Because we only as-
sumed (I) and (II), but no neural synchronisation, we will
consider this a false positive. Ignoring the phase value of the
resulting mean vector is a sound thing to do in the context of
pure physical systems of coupled oscillators like pendulums
or planets (M. G. Rosenblum, Pikovsky, & Kurths, 1996).
The only thing we want to do in that context is to establish
any significant statistical coupling between two oscillators.
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However, it has been shown that this approach does not give
sound results in the context of EEG signals because we can
have an alternative cause of the phase locking we would want
to exclude.

Neural Synchronisation Vector

Now let’s look at case B and see if it is possible to dis-
criminate the false positive in case A from the true positive
in case B. Let’s assume the two complex-valued signals c1
and c2 of two arbitrary participants have a phase difference
close to zero because they reached complete neural synchro-
nisation. The resulting value of Ψ will then be close to zero
and under the assumption of Phase Stability the value of the
mean vector will have a length close to one and a zero phase
angle. They key to discriminate between the cases A and B
lies in the phase angles: in case A the phase angle of the
mean vector will have an arbitrary value, while in case B this
value will be close to zero. This means we will need to mod-
ify equation (5) such that we keep the phase information of
the mean vector intact and obtain a Neural Synchronisation
Vector (NSV):

~γ ≡
〈
eiψ[k]

〉
k

(7)

When there is a strong synchronisation between the signals
the length of ~γ will be close to one and the distribution of the
phase angle will not follow a uniform distribution but will
have a fixed value. If there is no synchronisation the phase
angle will have an arbitrary value. Depending on whether
we have Phase Stability, we will obtain a length of ~γ close
to one regardless if there is neural synchronisation. This is
possible because Phase Stability is a property of one signal
that does not require any interaction with another signal. This
lack of interaction implies that on the basis of the assumption
of Phase Stability, we can only expect the phase angles of
~gamma to follow a uniform distribution. If the phase angle of
~gamma does not follow a uniform distribution, but converges

towards zero instead, this means there has to be a certain
form of interaction between the phases in order to diverge
from the uniform distribution of the phase angle.

Conclusion

Coupled oscillators in general and more specific neural
synchronisation are fascinating subjects. To properly test
the hypothesis that neural synchronisation is a neural sub-
strate for teamwork it might sound obvious that we have a
proper control condition and that our measurements exclude
false positives. However, in practice these things are not as
straightforward as it might seem. There are many subtleties
involved with both the research design and the mathematics
of the measurement. And while the point of the control con-
dition has been made before, the critique on the mathematical
technique seems to be new. The second section of this paper

showed that there are assumptions under which the PLI will
lead to a false positive, something that can be avoided by
using the NSV. It could be interesting to re-examine the ex-
isting datasets with the NSV in order to find out whether this
will lead to a different outcome. Before introducing neuro-
feedback, it would be desirable to understand what it exactly
is that the neurofeedback is trying to reinforce.
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