
Neurofeedback personalized with artificial intelligence to support
personal development:a preliminary study

R.Grouls, M.M. Hemker, A. van Gool
University of Utrecht

Personalized neurofeedback has been offered commercially for people with different types of
disorders. We explore the backgrounds of quantified EEG (qEEG), the different approaches and
underlying paradigs regarding neurofeedback as a tool for personal development. We hypothe-
size that neurofeedback can be useful for everyone, whether they are diagnosed with a disorder
or not. Our personalized approach is inspired by the approach of personalized medicine, that
takes the individual differences into account in order to finetune therpeutic interventions. We
propose different approaches to offer individuals a way to train their brainwaves, in order to
learn how to easily produce or switch between different brainwaves and their correlating states
of consciousness. Machine learning techniques can help in making these techniques more
widely available, as they remove the need for a professional that is currently necessary to
interpret the qEEG and select a neurofeedback protocol.

Introduction

Lately, the perceived dangers of Artificial Intelligence
(AI) have risen to the forefront of both the social and sci-
entific discourse. Although we acknowledge it is important
to think about these dangers, this paper will explore how AI
could contribute to a better world, by means of supporting
personal development. We operationalize this question by re-
searching how personalized neurofeedback, combined with
Artificial Intelligence, can support this personal development
by helping individuals acquire a greater range of freedom in
accessing different types of brainwaves and the correspond-
ing states of consciousness at will.

Personal development through personalized
neurofeedback

In this paper, we try to investigate the possibility of per-
sonal development with the aid of personalized neurofeed-
back, drawing inspiration from different area’s of research.
First off, this paper is a preliminary study regarding the lit-
erature on brainwaves and neurofeedback. We position our-
selves in the landscape of the different paradigms, and sug-
gest some ideas on how we could proceed. Our final goal
is to write software that utilizes an existing EEG-device for
personal use, the Muse headband (Muse, 2019), that creates
an interface capable of measuring typical patterns in brain-
wave activity, report this back to the user, suggests appli-
cable neurofeedback protocols and eventually gives the user
this neurofeedback.

Personalized medicine

The efforts to personalize therapy are adjacent to our re-
search. Even though there are a lot of differences between

therapy and personal development, therapy could also be
seen as a specific case in the broader domain of personal de-
velopment. The paradigm we are interested in is the shift
away from the ‘one-size-fits-all’ approach where the differ-
ences between clients are minimalised under statistical op-
erations. Now that knowledge and technology in healthcare
keeps improving, it starts to become easily achievable to tai-
lor an intervention towards the profile of the client. One of
these efforts is the research on predictors for the outcome
of therapy (Hardy et al., 1995; Rossiter, Agras, Telch, &
Schneider, 1993; Rounsaville, Dolinsky, Babor, & Meyer,
1987). However, in the research on predictors the therapy is
not adapted to the profile of the patient. Instead, the stud-
ies simply establish that some characteristics such as per-
sonality traits are correlated with the effectivity of a given
therapy. They still offer every patient in the trial the exact
same therapy, even though this will be suboptimal for certain
patients. For our setup, we explicitly want to personalize the
intervention in a way that will maximize the impact of the in-
tervention for the individual. That’s why research that looks
at moderators is much more useful for this approach as a
source of inspiration. Moderators are defined as ‘predictors
of differential response to alternative treatments’ (Simon &
Perlis, 2010) and are researched by what is known as person-
alized medicine. Even though an important part of personal-
ized medicine is focused at medical problems and thus looks
dominantly into physical moderators like metabolomics (Van
Der Greef, Hankemeier, & McBurney, 2006; van der Greef
et al., 2010; Wietmarschen et al., 2012), the mindset is in-
spiring to our research. Personalized medicine moves away
from a n=many approach, towards a n=1 approach, where
the differences between individuals are kept intact instead of
being removed through a statistical filter over the data. This
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way, the treatment is not as uniform as possible, but instead
catered to the specific individual.

Inclusive personalized neurofeedback

A second domain is research regarding neurofeedback.
Within this domain, we encounter different paradigms re-
garding the analysis of the EEG of a client and what the
quantification of the EEG means in terms of treatment. Neu-
rofeedback can be defined as a ‘method for retraining brain-
wave patterns through operant conditioning’ (Hammond,
2007). Brain activity can be measured as electropotentials,
which can be broken down into multiple waves, each with
a specific frequency, phase and amplitude. More on this in
section An overview of brainwave frequencies. Retraining
brainwave patterns comes down to measuring and quantify-
ing the brainwave patterns of an individual and reinforcing
activity with a certain frequency, location or phase. This rein-
forcement can be done in different ways, for example through
visual stimuli or through auditory signals. We encounter dif-
ferent paradigms underlying the different research. One axis
along which the paradigms can be classified ranges from ab-
normality to inclusion. On one side of the spectrum we find
the research of John, Prichep, and Almas (1992) focusing
on the treatment of psychiatric patients. They use quanti-
fied EEG (qEEG) as an approach to personalize the treatment
for the patients. Their paradigm, as reflected in their choice
of words, strongly centers about the idea of ‘normal’ people
versus ‘abnormal’ people. They used the qEEG to describe
an ‘abnormality vector’ in a brain signal space, where they
scaled the vector in standard deviations from the mean score.
The length of this vector indicates the amount of abnormality
of a patient, where the direction of the vector should indicate
the nature of their disease (John et al., 1992). The research
of Johnstone, Gunkelman, and Lunt (2005) moves somewhat
towards the middle of the spectrum and describes the idea of
qEEG as an intermediate phenotype, defined as “manifesta-
tions between genome and behavior”. These phenotypes are
qualified as (i) highly heritable (ii) reliable indices of brain
function (iii) not isomorphic with DSM categories (iv) with
implications for therapeutic intervention (Johnstone et al.,
2005). Where John et al. (1992) thought it to be important to
be able to show the correlation between the DSM diagnostic
labels and the qEEG profiles (even though he mentions that
‘patients with a homogeneous symptom category may be-
long to heterogeneous subtypes’), we see that Johnstone et al.
(2005) focusses more on the implications of qEEG profiles,
regardless of the correlation with DSM-criteria. For exam-
ple, he states that “it is clear that this pattern [excess frontal
Theta frequencies] is not specific to ADD and has been re-
ported in a number of other clinical disorders”. Johnstone
et al. (2005) tries to translate the qEEG profiles into indica-
tors for therapeutic interventions like suitable medication and
neurofeedback protocols. In the research of Arns, Drinken-

burg, and Leon Kenemans (2012) we also find the attitude to-
wards the qEEG profiles where ‘normal’ people are included
in the profiles, even though they do not discuss what this
implies for ‘normal’ people: “These EEG phenotypes [as de-
scribed by Johnstone et al. (2005)] occured in both ADHD
subjects as well as healthy control subjects.”. A review of
Arns, Heinrich, and Strehl (2014) shows that neurofeedback
has large effect sizes for inattention and implusivity for indi-
viduals with ADHD. When we look at the other end of the
spectrum, we find research that is explicitly inlcusive in its
paradigm towards using the qEEG. For example, when we
look at the research by Fingelkurts, Fingelkurts, and Kallio-
Tamminen (2015) about the personalization of meditation,
we find an approach where meditation is regarded as a “set
of self-regulatory techniques focused on maintaining atten-
tion and awareness with the goal to achieve a higher level of
well-being and serenity” which is useful for a broad range
of individuals, regardless of their degree of ‘abnormality’.
The qEEG profiles are used to personalize the method for
individuals to enhance the effectivity of their meditation and
to prevent possible negative effects. Another example is the
study of Cha and Lee (2018) that quantifies neural synchro-
nization between collaborating individuals and correlates this
with the quality of the teamwork as a way of direct feedback
and the prevention of critical errors. While we place our own
research at the ‘inclusive’ end of the spectrum, we can still
use methods or techniques that originated in the research that
focusses on the ‘abnormality’.

Machine learning

A third domain from which we draw inspiration is the gen-
eral domain of machine learning. A lot of the personalisation
in neurofeedback is done on the basis of the evaluation of
an expert of the qEEG. A raw EEG is made, and after ‘vi-
sual inspection’ an expert classifies the EEG as belonging to
one or more groups of qEEG (Arns, Gunkelman, Breteler,
& Spronk, 2008; Arns et al., 2012; Surmeli & Ertem, 2010;
Johnstone et al., 2005). A big downside of this approach
is the need for an expert to interpret and classify the brain-
waves. This is why we focus on the possibilities to use Ar-
tificial Intelligence to classify the brainwaves, which already
has been shown to be possible. (Tenev et al., 2014; Bird,
Manso, Faria, & Ribeiro, 2018)

An overview of brainwave frequencies

The different kinds of brainwaves mentioned in literature
are, ordered by frequency, Delta (0.5-3.5 Hz), Theta (3.5-7.0
Hz), Alpha (7.0-13 Hz), Beta (13.0-22.0 Hz) and Gamma
(22.0 Hz and up)(Thatcher, Krause, & Hrybyk, 1986). Note
that these ranges are a rough estimate, and can differ be-
tween researchers, for example Johnstone et al. (2005) gives
8-13 Hz for the Alpha bandwidth and Arns et al. (2012)
gives 8.0-12.0 Hz for Alpha and 15.0-20.0 Hz for Beta,
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putting a bandwidth called SMR in between those at 12.0-
15.0 Hz. Now, why are these distinctions made in the first
place? Different ‘modes of being’ have been ascribed to dif-
fering frequency ranges from very early on in the research
with EEG (Surwillo, 1963). We will describe three main
ranges:1. lowrange 2. midrange 3. highrange. Alpha is the
first and most exhaustively studied range, hence the name
Alpha. Gamma waves, after having been dismissed as ‘spare
brain noise’ for a while, are a more recently studied phe-
nomenon within neuroscience(Iqbal, PP, Khan, & Farooq,
2016). All these types are active to a certain extent on
any given time. However, usually one type’s amplitude sur-
passes the others, thus dominating the (un)conscious state of
being(Hammond, 2007).

Lowrange waves: Delta and Theta

Delta and Theta correspond to the least frequent and high-
est in amplitude brainwaves (Shaker, 2006). Delta and Theta
waves are most dominant during sleep (Cajochen, Foy, Dijk,
et al., 1999). Cajochen et al. (1999) performed research with
six sleeping volunteers during which all-night spectral anal-
ysis was carried out using an EEG. They found that relative
increase of low frequency waves in EEG occur when wake-
fulness is extended (16-40 hours of not sleeping).

Research of Maquet et al. (2005) used positron emission
tomography (PET) recordings during sleep which showed
that Delta waves were more dominant during Non Rapid
Eye Movement (NREM), the deep (dreamless) sleep. When
someone comes in the NREM sleep the amplitude gets higher
and the frequency lower. Cantero et al. (2003) showed that
Theta waves were associated with Rapid Eye Movement
(REM) sleep. In this phase people could also be dreaming.
The Theta waves were observed when there was a transi-
tion from sleep and during quiet wakefulness. Low Delta
has been observed along shallow sleep and poor ability to
rejuvenate mind and body (Aftanas & Golocheikine, 2001).

But Delta and Theta waves are also seen in other cir-
cumstances then sleep. They are more dominant dur-
ing childhood, and become less dominant when getting
older (Feinberg & Campbell, 2010). High Delta and Theta
activity can be indicative of learning problems, as well as
some subtypes of ADHD (Arns et al., 2008, 2012).

Theta may be part of learning, memory and stress reduc-
tion (Buzsák, 1998; Ward, 2003). It is usually observed
along with lower heart rate and slower breathing, as well
as daydreaming (Myers & Young, 2012). Jensen, Adachi,
and Hakimian (2015) found that hypnosis is associated with
Theta frequency activity. Theta waves are also associated
with meditation (Lagopoulos et al., 2009; Fingelkurts et al.,
2015). Aftanas and Golocheikine (2001) showed that subjec-
tive scores of emotional experience with meditation signifi-
cantly correlate with Theta waves. There are also indications
that Theta is correlated with creative processes, as Kruk, Ar-

avich, Deaver, and Debeus (2014) found that clay sculpting
elevated Theta power.

Midrange waves: Alpha

Alpha waves, seen as responsible for the common relax-
ation mode in adults, are most active when reflecting and
resting after effort has been made. This relaxed awareness
can thus be thought of as a recovery mode.(da Silva, 1991)
Cortisol, also known as the stress hormone, has been shown
to be negatively correlated with Alpha waves (?, ?). In re-
search conducted by Ward (2003), Alpha along with Gamma
brainwaves are suggested to guide attentional processing,
suppression and entrainment. They also found that Alpha,
unlike Delta and Theta, generally increases with age. In gen-
eral, Alpha waves “dominate the EEG of humans in the ab-
sence of external stimuli when internal life (mind-wandering
and spontaneous thoughts) is most pronounced (Fingelkurts,
Fingelkurts, & Kallio-Tamminen, 2016). In accordance with
these findings, there are correlations found between Alpha
power and creative ideation. According to research by Fink
et al. (Fink, Graif, & Neubauer, 2009; Fink, Grabner, et
al., 2009; Fink & Benedek, 2014), Alpha waves are “posi-
tively related to an individuals’ creativity level and has been
observed to increase as a result of creativity interventions”.
Sandkühler and Bhattacharya (2008) reports correlations be-
tween increases and decreases of Alpha brainwaves during
the process of insightful problem solving. However, excess
Alpha might lead to inability to focus, or even ADHD (?, ?;
Johnstone et al., 2005; Arns et al., 2008, 2012)

Highrange waves: Beta and Gamma

Beta and Gamma brainwaves correlate with alert and fo-
cused behaviour, as well as of engagement with the out-
side world, e.g. conversations, public speaking and com-
plex problem solving (Puzi, Jailani, Norhazman, & Zaini,
2013). Ideally, this would be the dominant brain state in
studying and problem solving. For example, Prat, Yamasaki,
Kluender, and Stocco (2016) found power in Beta and Low-
Gamma frequencies positively correlated with the rate of sec-
ond language acquisition. The alertness is also reflected in
response times. Alertness during high Beta was tested in
comparison to alertness during high Alpha. Response times
were found to be 12 ms faster in favor of Beta (Dustman,
Boswell, & Porter, 1962). A very interesting observation
made by Ward, supported by Miller’s research independently
is that Gamma oscillations seem to directly correspond to the
number of items in short-term memory (Ward, 2003; Miller,
1956)

Beta and Gamma waves are also correlated with more neg-
ative feelings of anxiety and stress, as well as the inability
to relax (Heraz & Frasson, 2007). Contrary to Theta and
Delta, for Gamma it is the lower than usual levels that have
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been linked with ADHD and learning issues, as well as de-
pression (Steffert & Steffert, 2010; Arns et al., 2008, 2012;
Johnstone et al., 2005; John et al., 1992; Heraz & Frasson,
2007).

Brainwave synchrony and coherence

The last section reviewed the breakdown of EEG patterns
into frequency-bands. Another way to quantify EEG patterns
is in terms of synchrony or coherence,which can be done in
different ways. Thatcher et al. (1986) describes a method
to quantify coherence, but since their paper in 1986, several
improvements have been suggested. Lachaux, Rodriguez,
Martinerie, and Varela (1999) describe a method to quan-
tify frequency-specific synchronization between two neuro-
electric signals, called phase-locking statistics (PLS). In or-
der to measure the phase covariance between two signals, the
method separates phase and amplitude components. They
hypothesized that cognitive tasks that require integration of
functional areas distributed over the brain are mediated by
neuronal groups that enter into phase-locking. Lachaux et
al. (1999) give their PLS-method as an alternative for using
frequency coherence, a measure of the linear covariance be-
tween two spectra. A downsize of coherence is that it as-
sumes that “each segment of data correspond to the same
process with the same spectral properties”. As “this assump-
tion of stationarity (in time or across trials) can rarely be
validated”, Lachaux et al. (1999) prefer the PLS method.
Fingelkurts and Fingelkurts (2008) propose another method
to measure synchrony, which they call “operational syn-
chrony” (Fingelkurts et al., 2016; Fingelkurts & Fingelkurts,
2008, 2011) which is thought to overcome the disadvantages
of multiple other methods to measure synchrony (Fingelkurts
& Fingelkurts, 2011). They find that long-term meditation
induced changes in the operational synchrony (Fingelkurts
et al., 2016). Another approach towards synchrony comes
from Cha and Lee (2018), already mentioned in section In-
clusive personalized neurofeedback, who correlate the syn-
chrony between individuals with the quality of their team-
work. Travis et al. (2009) reports several studies that indi-
cate higher levels of frontal EEG Alpha coherence, who in-
tegrates different measures into a “Brain Integration Scale”.
We can thus conclude that there is a diversity of methods that
are used to measure synchrony or coherence, without a clear
consensus between researchers on the exact method. How-
ever, regardless of the method used, we think that coherence
or synchrony can be an interesting measure of brainwaves for
our purposes.

Paradigm on modifying brainwave patterns

While reviewing the different correlations between brain-
waves and states of consciousness, it is clear that there are
no brainwaves that are ‘better’ than other brainwaves. Alpha
brainwaves might be excellent for mediation and creativity,

but they can also be correlated to problems with concentra-
tion and focus (Johnstone et al., 2005; Arns et al., 2008). For
our application, we are not specifically interested to classify
people on an axis of abnormality. In our view, brainwave
patterns could be compared to different muscles. Everyone
should be able to use all muscles to a certain extent, but dif-
ferent situations require the use of different muscles. This
could even differ during the day, as someone might need
Beta waves during the day to study, but Alpha waves in the
evening to relax and Theta waves to sleep. The research done
with neurofeedback for psychiatric clients mainly shows that
even individuals with highly deviating brainwave patterns are
able to modify these patterns, from which we infer that it
should be feasible for people with less deviated patterns to
modify their brainwave patterns by training with the aims of
neurofeedback (Arns et al., 2014).

We hypothesize that acquiring a greater range of freedom
in accessing all types of brainwaves at will would support
people in varying area’s of their lives. While scoring in-
dividuals along an axis of abnormality might be helpful in
some cases, we think that people should have the freedom to
pursue self-chosen goals in terms of brainwave patterns. It
might be the case that someone already has a lot more access
to Alpha waves as compared to ‘normal’ people, but would
still be interested to train his these brainwaves because of a
certain type of work or personal goals in life.

We envision an application that makes an inventory of an
individuals brainwave patterns, makes an analysis of these
patterns and suggests multiple neurofeedback protocols, as-
sociated with possible goals an individual might want to pur-
sue.

Strategies for the selection of neurofeedback protocol

As we have seen in the previous sections, there are numer-
ous ways to quantify EEG patterns. In addition to this, there
are also numerous ways to select an appropriate neurofeed-
back protocol.

Quantification of patterns

Z-scores. John et al. (1992) describes the method of rep-
resenting the qEEG as an abnormality vector in a brain sig-
nal space. They do this by scaling the values in Z-scores or
standard deviations from the normative mean. We find this
approach of comparing brainwave patterns which along this
abnormality vector in different studies, mostly studies aimed
at psychiatric conditions (Arns et al., 2012, 2008; Johnstone
et al., 2005). While we differ with regards to the underly-
ing paradigm, it might still be useful information to compare
brainwaves to a normative mean. One’s own typical brain
patterns might be easier to interpret against the background
of the normative scores. This does not mean that an individ-
ual should strive to ‘normalize’ his or her own brainwaves
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towards the mean, but it could be useful information never-
theless.

Personal ratios. In addition to a comparison with the
normative mean, it is possible to obtain the ratio’s of an indi-
vidual’s brainwaves, relative to himself, with the Muse head-
band (Muse, 2019; Bird et al., 2018). For example, someone
could learn that his own brainwaves are composed of 50%
Beta frequencies regardless of what is considered ‘normal’.
We could help an individual to interpret this data, by giv-
ing information about the correlations between his specific
brainwaves and states of consciousness as described in the
literature. We want to research if we are able to create in-
dividual labels, correlated with specific states of conscious-
ness for an individual. This could be obtained by having an
individual wear an portable EEG-dives like the Muse Head-
band (Muse, 2019) for multiple days, during different states
of mind. When the individual labels his own states of con-
sciousness (e.g. focussed, distracted and relaxed) it might be
possible to correlate these labels with characteristic patterns
for the individual, using basic statistical techniques. This
way, an individual could get help to obtain brain states he
has shown to be able to reach previously, but just doesn’t
know how to get back to.

Selection of a neurofeedback protocol

After the current pattern has been characterized, a proto-
col for neurofeedback can be selected.

Negation combined with heuristics. A commonly
found heuristic to select a protocol, is to simply construct the
negation of the dominant pattern in combination with some
simple heuristics (Johnstone et al., 2005; Arns et al., 2008,
2012). To make this more clear, we can rewrite the qEEG
patterns and the protocols with a three-digit code, where
the first digit represents the lowrange frequencies, the sec-
ond digit represents the midrange frequencies and the third
digit represents the highrange frequencies. The number ‘1’
would represent an high activity on that frequency range,
the number ‘0’ would represent a low activity on that fre-
quency range. With this syntax we can represent a lot of
the qEEG phenotypes and protocols described. E.g. the pat-
tern that is characterized by Johnstone et al. (2005) as “in-
creased Delta and Theta, with or without low frequency Al-
pha” could be represented as 100 or 110. The neurofeedback
protocol suggested for this pattern is to “inhibit [. . . ] activ-
ity below 10 Hz, add reward Beta frequencies”, which could
be represented by 001. Another example: “excess tempo-
ral lobe Alpha” is characterised as “increased alpha activ-
ity generated in temporal lobe” and could be represented as
010. The corresponding protocol is “inhibit 9-12 Hz activity
and inhibit frontal slow activity”, which could be represented
as 001. The heuristic to create a neurofeedback seems to
be to negate the pattern with the exception of the low fre-
quencies, that are never reinforced in the protocols described

by Johnstone et al. (2005). This heuristic is probably opti-
mised for the specific disorders that Johnstone et al. (2005)
worked with. For example, people with sleep disorders might
be interested in stimulating Theta waves (Cajochen et al.,
1999), as well as people interested in certain aspects of med-
itation (Lagopoulos et al., 2009; Fingelkurts et al., 2015)
or the creative process (Kruk et al., 2014; Myers & Young,
2012).

Informed selection. Another approach could be to
make a choice, based on known correlations. For example,
as research has found a correlation between the rate of sec-
ond language acquisition and Beta frequencies it could be
helpful for an individual to pursue these specific frequencies,
regardless of his own brain patterns. Thus, even though an
individual would score a 010 pattern when compared to the
normative mean, it could still be useful for this individual to
use a 010 protocol to even further train his capacities with
regards to the Alpha brainwaves.

Conclusion

We have explored a wide range of literature regarding
different types of neurofeedback and correlations between
qEEG patterns and activities or states of consciousness. We
conclude that there is a wide range of mental processes that
seem to flourish under specific brainwave patterns. The re-
search shows that there is a large effect size for people with
ADHD, from which we draw the conclusion that it is very
well possible to modify one’s own brainwave patterns, even
if there is a large deviation from the mean. We hypothesize
that acquiring more freedom in accessing different types of
brainwaves at will, would help people with their personal de-
velopment and would increase their quality of life. Whether
this really is the case, will be the subject of our future re-
search. We end with an overview of different strategies that
could be used to quantify the EEG and to select neurofeed-
back protocols. How to test whether these strategies are use-
ful will also be part of our future research.
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