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Chatbots cover a broad range of possible applications. Interacting with human emotions is
a small but necessary subset of the skillset necessary for meaningful interaction. This paper
explores strategies to create a chatbot that is able to adapt to the emotional cues during a
conversation. A first challenge is to handle the dimensionality of human communication that
is addressed with strategies to reduce the dimensionality of both input and output. Additional
challenges are handling the continuous action space of semantic vectors and the variations in
personality types. I propose an ensemble model of machine learning techniques and conclude
with a perspective on the generation of meaning and the consequences this has for a possible
implementation.
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Introduction

Emotional aware chatbots

A chatbot can be defined as “computer programs that inter-
act with users using natural languages” and the first chatbots
that could do so have been developed in the 60s (Shawar &
Atwell, 2007). One of the first chatbots was named ELIZA
and was built at MIT in 1966. ELIZA was intended to sim-
ulate a Rogerian psychotherapists and operated with tech-
niques like pattern-matching to react to user input and by ask-
ing basic questions modeled from a therapist like “please tell
me more” (Shum, He, & Li, 2018). Despite this simple ap-
proach and the limited domain, some users actually believed
they were talking to a real person (Shum et al., 2018). Since
these early years, a lot of work has been done in the domain
of chatbots and Natural Language Processing. More generic
chatbots have been developed by the mayor tech companies
to act like intelligent personal assistants (IPAs) (Shum et al.,
2018). There are also more specialized chatbots like Woe-
bot and Wysa that offer cognitive-behavioral therapy with
significant impact on the users (Fitzpatrick, Darcy, & Vier-
hile, 2017; Inkster, Sarda, & Subramanian, 2018). In 2016,
Facebook and Microsoft stimulated users to create their own
chatbots on their messaging systems. Within a year, over
30.000 chatbots had been launched on Facebook Messen-
ger (Brandtzaeg & Følstad, 2017). While a lot of these
chatbots are used for customer service or marketing pur-
poses, end users of chatbots report a wide variety of mo-
tivations to use chatbots including increasing productivity,
information retrieval, entertainment or social and relational
needs (Brandtzaeg & Følstad, 2017). For every domain and
motivation, there are different drivers that make a chatbot
successful. In general, chatbots use human language as an
interface to interact with the user, and mastering the differ-
ent aspects of human language better will improve the ability
to interact with the user. An important aspect of human lan-
guage that chatbots should learn to master is handling human
emotion (Brandtzaeg & Følstad, 2017; Pamungkas, 2019;

Lee, Oh, & Choi, 2017; Oh, Lee, Ko, & Choi, 2017; Kim,
Kim, Kim, & Lee, 2018; Huang & Zaïane, 2019). As this
is a very generic problem, with a wide range of possible ap-
plications, this paper looks into the subject without trying to
pinpoint how and when this approach could be applied. The
main question of this paper is what a effective architecture
might be for an adaptive machine learning model to interact
with a user on an emotional and nonverbal level. Subques-
tions are how to handle the (i) high dimensionality of human
communication (ii) continuous actions space (iii) variations
in human personality types.

Dimensionality reduction

High-dimensionality

An important challenge in mastering language is the high-
dimensionality and complexity of the patterns that need to be
learned for both the state space and action space. For exam-
ple, the same intention or meaning can be verbalized in a lot
of different ways. Also, the meaning of a single word or even
a complete sentence can be ambiguous depending on how
the grammatical structure of a sentence is analyzed. Lan-
guage typically has long range relationships, which means
that the meaning of a certain word can sometimes only be
understood in the context of another word that occurred be-
fore. This means that an algorithm that can properly interpret
what is being said, need to take into consideration what has
been said before, sometimes even more than one sentence
earlier. While some types of chatbots (like the IPAs) intend
to accept the complete range of linguistic expression, it is
obvious to everyone that has ever tried such a system that
an IPA will struggle to understand what you mean. Human
users that are skilled in using IPAs will learn which syntax
they have to follow in order to help the IPA understand what
they mean. This is an example of how a reduction in the state
space helps a chatbot to navigate meaning and intention of a
conversation. Some chatbots limit the complexity by offering
closed questions (e.g. ELIZA asking “What is your name?”).
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Another approach is to reduce the action space. Some re-
searchers do this by using clustered actions, which are groups
of sentences that have related meaning as defined by a se-
mantic vector derived from word embeddings (Cuayáhuitl,
Lee, Ryu, Choi, et al., 2019). Others focus on creating hard-
coded scripts that follow a certain theory, like cognitive be-
havior therapy (Fitzpatrick et al., 2017). In this paper I will
take the same approach to this problem: making the machine
learning manageable by reducing both state space and action
space.

Reducing state space

Most chatbots that attempt to handle emotions focus on the
meaning of words or the intonation of the voice (Lee et al.,
2017; Huang & Zaïane, 2019; Oh et al., 2017; Kim et al.,
2018). However, verbal communication is very limited in the
amount of words it can produce per time unit. While studies
have found rates up to an average of 13.83 syllables per sec-
onds for sports commentary (Fonagy & Magdics, 1960), the
average rate ranges between 3.3 and 5.9 syllables per second
depending on emotional and social context (Arnfield, Roach,
Setter, Greasley, & Horton, 1995).

Because a sentence contains only a few words, there are just
a few data points which is a problematic if we are trying to
solve a problem with such a high dimensionality. We don’t
get that much observations per time unit, even none when
people do not talk, while the observations we do get have a
very high degree of freedom which makes the dimensionality
extremely high. Typically, to solve a problem with machine
learning we would want to have this the other way around:
many observations with a low dimensionality.

Consider this: when someone speaks a sentence this usually
contains somewhere between 1 and 100 words. These words
can be picked from a vocabulary that runs into the tens of
thousands. And the syntax is very flexible, as we can com-
bine the same words in numerous ways. This yields into an
almost endless amount of possible sentences that can be ut-
tered.

While auditory information has a slightly higher observa-
tional density (syllable can contain more than one tone), the
range of tones and thus the degrees of freedom are much
lower. In addition to this the tone of voice can transfer addi-
tional information like stress (Kurniawan, Maslov, & Pech-
enizkiy, 2013) and emotion (Casale, Russo, Scebba, & Ser-
rano, 2008).

But when comparing both verbal and auditory to the obser-
vational density of facial expression, the latter has a substan-
tially higher density in terms of observations per second. It
is impossible to not have a facial expression, so there are
no “silent” periods. This means that we have a continuous
stream of information, which increases the amount of infor-

mation. In addition to the ordinary facial expression of emo-
tion, emotions will also express themselves in the form of
micro-expressions. These are defined as “rapid, involuntary
facial expressions which reveal emotions that people do not
intend to show” (X. Li et al., 2017). This gives us access to
a new domain of information, a domain that can reveal sub-
conscious reactions that could be very difficult to spot with
access to just words.

The result is that using facial expressions yields a lot more
observations that we can use to learn from. At the same
time, the degrees of freedom for facial expressions are much
lower than those of natural language. There are just 20 fa-
cial muscles available we can combine to generate expres-
sions. These 20 facial muscles have a fixed location, which
limits the syntax of this visual language a lot. Even though
there are cultural differences how facial expressions are rec-
ognized and emotions can be combined in expressions, there
is still enough overlap to talk about universal facial expres-
sions (Matsumoto, 1992; Boucher & Carlson, 1980; Barrett,
Adolphs, Marsella, Martinez, & Pollak, 2019).

Both of these characteristics (increased observational den-
sity, decreased degrees of freedom per observation) help to
reduce the curse of dimensionality.

We will lose a lot of information that can be essential in a lot
of domains while focusing exclusively on facial expressions.
But for our purpose of handling human emotion the informa-
tion we receive might tell us more than enough. It could even
unlock domains that would have been inaccessible when re-
lying exclusively on spoken words.

As the input of the architecture I will describe in full later
on, I will use emotion recognition implemented though deep
convolutional neural networks in order to reduce the dimen-
sionality of the facial expressions, as described and imple-
mented by Correa, Jonker, Ozo, and Stolk (2016). This
model takes facial expressions through a live camera as input
and outputs a vector with seven emotions (neutral, surprised,
sad, happy, fearful, disgusted, angry) where the intensity of
every emotion is a number between 0 and 1. This effectively
reduces a snapshot of the state space to R7. An illustration
from the Correa et al. (2016) paper is shown in figure 1,
where the face is classified as mainly disgusted with a little
bit of anger as is shown by the blue bars. This processing has
a certain frequency f which can be expressed as images pro-
cessed per second. While facial expressions can change very
fast (as with micro-expressions) it makes sense to observe the
emotional state for a certain length of time that is a longer
than a few milliseconds. Emotional reactions to images can
comprise several seconds and sequences of reactions (e.g. we
could be initially surprised and then start smiling). If we ob-
serve the state space in discrete time steps t with a length l
(e.g. 2 seconds) we will obtain multiple instances of this R7
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Figure 1. Emotion recognition

vector, depending on the sample rate f . We can denote the
amount of instances per time step as L = f × l. Stacking L
observations gives us a R7×L vector as a representation of the
state space st.

Reducing action space

Where natural language increases the dimensionality of the
state space, it does the same for the action space if we expect
the chatbot to use natural language. Because of the high di-
mensionality, it is much more difficult for a machine learning
model to express the right1 emotional tone through natural
language. The high dimensionality is reflected in the model
as millions of weights that all need to be adjusted and trained,
which makes the model infeasible to train. And while this
can seemingly be circumvented by using scripted answers
(like ELIZA did: “oh interesting, tell me more...”) this sets
high expectations for the grammatical skill level of the chat-
bot. Expectations that will not be fulfilled if the conversation
becomes longer then a few sentences.

If we want to evoke emotions, moving to a visual language
is much easier. Visual communication is said to be as impor-
tant as verbal communication, if not more so (Lester, 2013).
Images increase engagement and evoke stronger preferences
than verbal stimuli (Leutner, Yearsley, Codreanu, Boren-
stein, & Ahmetoglu, 2017). And the processing of images
takes milliseconds and has been shown to evoke reactions,
even when images are flashed so quickly (a few millisec-
onds) that people are unable to become conscious of what
they actually saw (Mack & Clarke, 2012; Koch & Tsuchiya,
2007). This phenomena is labeled “perceptual gist”. Even
though people are not aware of what they saw, they are shown
to respond both mentally (processing arithmetic) and emo-
tionally (revealing sexual orientation) to these flashed im-

ages (Sklar et al., 2012; Jiang, Costello, Fang, Huang, &
He, 2006). In addition to this, images are correlated to the
deeper structures of a personality. It is possible to predict
personality traits like the Big Five2 based on images liked
on social networks (Guntuku et al., 2017; Segalin, Cheng,
& Cristani, 2017). This correlation is high enough to create
reliable personality tests (Leutner et al., 2017). The combi-
nation of these observations suggests visual communication
through images to be highly useful in emotional communi-
cation. Even though there are numerous images that can be
shown, even more so than words, we don’t suffer from addi-
tional complexity caused by having to learn a syntax that al-
lows for recursion and long range references. If we show two
images in a sequence, it is much harder to make “grammati-
cal errors” than it would be while constructing a sentence.

Constructing semantic vectors3 can help us to find the rel-
evant “semantic neighborhood” that contains a likely emo-
tional trigger. And while it is possible to construct semantic
vectors for both words and images, finding the ‘right’ mean-
ing for a given reward function but messing up the gram-
matical order necessary to convey meaning can cause a con-
versation to fail. The dimensionality of a sentence can be
estimated to have an upper boundary of nk, with n the size
of the vocabulary and k the length of a sentence. By us-
ing images, we will reduce the size of k necessary to create
a meaningful sentence and thus reduces the dimensionality.
Instead of using a dictionary of 50.000 words to construct
a sentence by combining multiple words into a grammatical
correct sequence that conveys the intended message while
messing up the syntax and thereby destroying the efficiency
of the message, we can reduce the action space by using a
“vocabulary” of 50.000 images of various scenes where even
a single image can evoke an emotional response. The action
that needs to be taken is to convey the right emotional tone
as defined by the reward function by picking just one image
from this vocabulary, without the burden of combining mul-
tiple images into a sequence with a proper syntax.

A problem for training semantic vectors for visual sentiment
analysis is the absence of large-scale datasets with labeled
sentiments (Al-Halah, Aitken, Shi, & Caballero, 2019). This
problem is often addressed by using models trained for ob-
ject classification and to employ transfer learning methods
for sentiment. However, a problem with this approach is that
most objects labels are sentiment neutral: objects from the
same category can express various emotions. A recent ap-

1what exactly should be considered to be ‘right’ in this context
is discussed in section The reward function

2Often referred to with OCEAN, which stands for Openness,
Conscientiousness, Extraversion, Agreeableness, Neuroticism

3Semantic vectors map meaning to spatial dimensions, repre-
sented as a n-dimensional Cartesian product Rn. Words or images
with the same meaning are placed closer to each other.
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Figure 2. SmileyNet semantic vector

proach is to use images collected from social media with their
associated emoji’s. Al-Halah et al. (2019) created a dataset
of 4 million images from Twitter, with associated emoji’s. In
a certain way, these images can be considered to be labeled
with a certain sentiment by the users of Twitter. Instead of
using all 3019 emoji’s from the Emoji v12.0 Unicode list, the
researchers choose a subset of 92 smileys. They adopted the
50 layer neural network from ResNet50 as a base architecture
for their model and implemented a image embedding using
emoji prediction task. This results in a deep neural model
(SmileyNet) that takes images as an input, and outputs a vec-
tor for 92 smileys where the prediction for every smiley is a
number between -1 and 1. For an illustration of this process
from the Al-Halah et al. (2019) paper, see figure 2. Using this
model reduces the action space for selecting a single image to
a continuous action space of dimensionality R92. While this
is still a huge action space and more or less equal to the di-
mensionality of picking a single word from a n-dimensional
semantic space, we have shortened the length k of a sentence
(in this case referring to a sequence of either words or im-
ages) necessary to make emotional impact. And because the
dimensionality of a sentence has an upper bound of Rnk

it is
not the value of n (which is roughly equal for both cases) but
the value of k that creates the unmanageable dimensionality
in the case of natural language. While the biggest reduction
in dimensionality will come from reducing k, it is possible
to reduce the dimensionality n of the semantic vector even
further. For example, there are groups of happy emoji’s that
could be combined into one “supergroup” of happy emoji’s.
This way, the semantic vector would loose expressibility but
win on learning speed.

By reducing the dimensionality of the state space and the
action space, I have also defined the input and the output of
the model as an continuous state space with R7×L and a con-
tinuous action space of Rnk

which is equal to Rn if we set

k = 1.

The input for the model will be facial expressions, recorded
by a camera, and translated into a vector of seven emotions.
The output will be a semantic vector that corresponds to im-
ages of a certain sentiment, communicated to the user as the
presentation of the image.

Handling a continuous actions space

The DDPG algorithm

Machine learning is often classified in supervised, unsu-
pervised and reinforcement learning. Supervised learning
needs labeled input-output pairs. Unsupervised learning does
not put a label on the output, and learns from input alone.
Reinforcement learning uses a reward signal to evaluate
input-output pairs and learns the optimal output for each in-
put (Smith, 2002). A recent promising approach for learning
for chatbots is Deep Reinforcement Learning (Cuayáhuitl,
Lee, Ryu, Choi, et al., 2019; Cuayáhuitl, Lee, Ryu, Cho, et
al., 2019; Fung et al., 2018; Kiseliou, 2020; Serban et al.,
2017; J. Li et al., 2016).

A basic reinforcement learning model consists of an agent
interacting with an environment E. At each discrete time
step t the agent receives an observation xt, takes an action
at and receives a reward rt. The interaction is modeled as
a Markov decision process, and can be defined as a 4-tuple
(S , A, p, r) (Silver et al., 2014; Lillicrap et al., 2015) where:

(i) S is a set of states (the state space)

(ii) A is a set of actions (the action space)

(iii) p : S × A× S → [0, 1] is a transition dynamic distribu-
tion p(st+1 | st, at) that gives the probability that action
at in state st will lead to state st+1.

(iv) r : S ×A→ R is the reward function r(st, at) that gives
the (expected) immediate reward after going from st to
st+1 due to ati.

The behavior is defined by a policy π : S → P(A) that maps
states to a probability distribution over the actions. The goal
is to find an optimal policy π that maximizes the discounted
future reward rγt =

∑∞
k=t γ

(k−t)r(sk, ak) where 0 < γ < 1 bal-
ances short term gain and long term gain. Q-learning defines
an action-value function Q (Lillicrap et al., 2015)

Q π(st, at) = EE,π

[
rγt | st, at

]
(1)

which means that we can map a state and action pair (st, at)
to an expected value rγt with regards to a certain policy π and
environment E. This equation can be defined recursively,
known as the Bellman equation

Q π(st, at) = EE
[
r(st, at) + γEπ[Qπ(st+1, at+1)]

]
(2)



EMOTIONAL AWARE CHATBOTS 5

which can be understood as the expected value with regards
to the environment E for the immediate reward r(st, at) added
to the expected Q-value with regards to the policy π for the
next state st+1 and action at+1. This is ingenious, because
where we first needed the complete future trajectory of re-
ward observations, we can now use the immediate reward
r(st, at) and approximate the function Q(s, a) to get the Q-
value for the next state. If we make the policy deterministic
it is described as µ : S → A and thus remove the inner expec-
tation which yields

Q µ(st, at) = EE
[
r(st, at) + γQµ(st+1, µ(st+1)

)]
(3)

Because now the expectation is only dependent on M and
the environment, we can learn Qµ off-policy by probing dif-
ferent actions generated with a stochastic policy β. In Q-
learning the function µ : S → A is a greedy policy µ(s) =

argmaxaQ(s, a) that returns the expected best action a for
every state s. If we want to learn function approximators pa-
rameterized with θQ, we can optimize these by minimizing
the loss

L(θQ) = Est∼ρβ,at∼β,rt∼E

[(
Q(st, at | θ

Q) − yt

)2
]

(4)

Where the discounted state visitation distribution for policy
β is denoted as ρβ and

yt = r(st, at) + γQ
(
st+1, µ(st+1) | θQ

)
(5)

The fact that yt is dependent on θQ is usually ig-
nored (Lillicrap et al., 2015). While this works well in spaces
with a lower dimensionality and a discrete action space, it is
not practical to use Q-learning in continuous action spaces.
Finding greedy policy µ would require optimization of at for
every time step and if the action space is continuous this
is too slow. To make reinforcement learning possible for
continuous action spaces Lillicrap et al. (2015) proposes a
Deep DPG algorithm. This uses (i) an actor-critic approach
based on the deterministic policy gradient (DPG) algorithm
described by Silver et al. (2014), and combines that with us-
ing (ii) two target networks and (iii) experience replay, as
found in the Deep Q Network (DQN) described by Mnih et
al. (2015). The actor-critic approach uses two networks:

1. Actor A parameterized function µ(s | θµ) that proposes
an action, given a state.

2. Critic The parameterized Q-function Q(s, a | θQ) that
predicts if the action is good or bad, given a state and
action.

Through adding a parameterized actor Silver et al. (2014)
proved that we can calculate the policy gradient. The expe-
rience replay addresses the challenge that most optimization
algorithms have the assumption that the sampled observa-
tions are independently distributed. Yet, if we are exploring

Figure 3. Pseudocode

sequentially, this assumption no longer holds. The replay
buffer addresses this problem. This is a cache R that stores
tuples (st, at,Ra, st+1) which are transitions according to the
exploration policy. Instead of learning only from the most
recent experience, the algorithm learns from a sample from
the accumulated experience. The two target networks ad-
dress the problem that implementing Q-learning proved to be
unstable. This is because the Q-function Q(s, a | θQ) being
updated (see equation 4), is also used in the calculation of
its own target yt (see equation 5). The solution is to make
a copy of the two networks as Q′ and µ′ and update those
instead during for the length of a batch. This can be com-
pared to keeping a certain strategy around for a while, and
not immediately changing your mind about a strategy after
every new experience, but only after certain intervals. The
pseudocode from Lillicrap et al. (2015) is shown in figure 3

A general architecture

Connecting DDPG to the environment

We can combine all of this into an architecture as shown
in figure 4. At the left of this flowchart a facial expression
captured by the camera is shown. This image is fed into
the pretrained CNN according to the method of Correa et
al. (2016). The output of this CNN is a seven-dimensional
vector for every image that is processed at a frequency f by
the CNN, which can be combined for a discrete time step t
into a state space st with dimensionality R7×L. The state st

is the input for the DDPG. The actor µ(st | θ
µ) receives this

st and adds some exploration noise which is sampled from
a noise process N . The actor outputs as an action a vector
with dimensions Rn, representing a semantic vector that rep-
resents a certain sentiment. Using the approach as described
by Al-Halah et al. (2019), we can assign semantic vectors to
a vocabulary of images stored in a database. This way we can
pick an image for the vocabulary that is closest in meaning to
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Figure 4. Architecture overview

the action generated by policy µ. This response is shown to
the user, that will react to this image with a spontaneous fa-
cial expression if the policy picked the right semantics for the
image as defined by the reward function. This reaction will
be recorded by the camera and translated by the CNN into
st+1. By comparing st and st+1 we can calculate a reward.
This complete cycle of (st, at, rt, st+1) is then stored into the
buffer for experience replay. The DDPG will train and up-
date the Critic and Actor by sampling minibatches from the
buffer.

Possible obstacles

On a conceptual level, how can we understand the learning
process of this architecture? The only thing that the DDPG-
network can perceive of its environment is an emotional state
as described by the seven dimensions of the CNN. While
seven emotions might not seem to be that much, keep in
mind that the CNN-network will output a combination of
emotions. It will be able to identify complex combinations
of emotions in varying intensities and because it observes a
sequence of snapshots during a period of time it will also be
able to perceive the evolution of a facial expression through
time. Based on the emotions it perceives, the DDPG will start
to act. This means that in theory it will learn to find out what
type of images will evoke emotional reactions. But, what
kind of emotional reaction are considered to be the goal of
the communication depends completely on the reward func-
tion. The model could be trained to make you smile, but
that is only useful in some contexts. For example, in a thera-
peutic communicative context it might be useful not to avoid
sad feelings, but to explore them to a certain extent. In the-
ory, this network could learn to understand what types of im-
ages would evoke any type of emotional reaction, as long as
this reaction is registered by the camera (which can be sub-
perceptible for a human in the case of micro-expressions).
An important obstacle in learning this might be the speed at

which the network learns behavior that makes it interesting
for the user to interact with the chatbot. If the chatbot gen-
erates images that do not engage the user, the user will stop
generating observations. With the current design, the chat-
bot will start with random behavior and will specialize in the
navigation of the emotional landscape for one person, which
is slow. Training the system on multiple persons will have the
advantage that the system does not has to start from scratch,
which will give an important increase in speed for the learn-
ing rate but it might encounter other kinds of problems that I
will discuss in the subsection Adapting to personalities. But
before I will dive into that topic, I will take a deeper look at
the design of the reward function.

The reward function

The network learns what works and what does not work
through the feedback it receives. It will start out with ran-
dom weights, that correlate with random actions. At the
start, the network will be like a baby that is making random
movements but can not walk. Every time the DDPG network
(or the baby, for that matter) takes an action, this action is
either reinforced if it yields the desired effect or weakened
if it yields an undesired effect. Based on the positive and
negative feedback from its environment, both the network
and the baby will learn what actions are effective and which
actions are not. From this analogy we can understand why
the feedback mechanism is essential in learning to reach a
certain goal. Most papers that discuss reinforcement learn-
ing do not cover the reward function extensively. Most of
the time, this is something that is given by the environment.
Admittedly, for the simple examples that most of the papers
use for testing their networks the reinforcement function is
very straight forward. When the objective is to win a game
like Go or Chess the reward is a direct derivative of the rules
of the game. When the objective is a physical challenge like
balancing a pole upright or to get a car up a hill, the goal
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Figure 5. Surprising behaviors

can be straightforward defined as the distance to a location
or position. No one will ask the question “Yes, but does
the car actually needs to by on top of the hill?” However,
at the moment we enter the domain of human psychology
setting the reward function is not that straight forward any-
more. One could ask: “what exactly is the ‘right’ response in
a conversation?” or even “what is the desired emotional reac-
tion?” A coach that is trained in ’Trauma Release Coaching’
might give a different answer to these questions then some-
one trained in ‘Provocative Coaching’. And a stand up come-
dian will have a different goal in mind then a sales person. In
addition to not reaching the intended goal (regardless of what
that is), the same goal can be defined in numerous ways and
a wrong definition can have unintended negative side effects.
Bostrom (2016) points out that we might not be aware of how
challenging it is to guarantee the intended implementation of
a certain goal. He describes an imaginary example where
an artificial superintelligence is given the goal to “make us
smile”. This goal could be implemented as “paralyze human
facial musculatures into constant beaming smiles”. While it
is obvious to us that this probably was not the original in-
tention of the goal, it technically meets the criteria that the
system has been given. Bostrom (2016) labels this prob-
lem as ‘perverse instantiation’. Even though this example
might seem far-fetched, this type of unintended behavior can
actually be observed in relatively simple simulated environ-
ments. In a paper titled “Emergent tool use from multi-agent
autocurricula” (Baker et al., 2019) the researchers observe
the evolution of a multi-agent system where two groups of
agents learn how to play hide-and-seek in a simulated envi-
ronment. A team of two ‘hiders’ (blue colored, see figure 5)
and two ‘seekers’ (red colored) were controlled by a stan-
dard reinforcement learning algorithm. The agents received
a team based reward; hiders are given a reward of 1 if all
hiders are hidden and -1 if any hider is seen by a seeker.
Initially, the hiders “solved” the problem by simply running
away from the playing field (see the right image in figure 5).

Yes, indeed, that was the most efficient way to keep all hiders
hidden from the seekers. To encounter this behavior the re-
searchers had to put an additional penalty of -10 points if
hiders went too far away from the play area. But the inven-
tivity of the agents to find loopholes in the game did not end
here. One example is that the seekers discovered the trick
of ‘box surfing’ (see the left image of figure 5 where you
can see the red seeker ‘surf’ a box). Seekers found out they
can jump on boxes in the environment and move the box by
exerting a force on the box, regardless of whether they were
touching the ground or not. Obviously, our physical laws do
not allow us to do that 4. But the programmers that created
the simulated environment for the agents just did not thought
of this possibility and did not implement that physical re-
striction into the game dynamics, so the agents exploited this
loophole. While this is not a perverse instantiation per se,
it can surely be classified to be unexpected behavior. If we
return to our reinforcement learning environment, notice we
have a multi-agent reinforcement setting too. The human is
one agent, the chatbot is the other agent. What behavior do
we want to reinforce on our chatbot? Imagine that we would
simply reward the chatbot for evoking emotion. In theory,
this could lead to a chatbot that specializes in finding trau-
matic patterns in people and evoking fear, disgust and anger
as quick as possible. After all, it could be easier to disgust
some people than to make them laugh. In most contexts this
would be considered to be unintended behavior. So, it is nec-
essary that we define what is right, and what not. But what
is the right communication? To answer that, first let’s have a
short look at communication. Keeble (2006) lists three gen-
eral types of definitions of communication occurring in the
literature:(i) Communication is behavior (ii) Communication
is a flow of information (iii) Communication is interaction.
These are all very broad and general definitions that can be
found in literature, but are criticised by Keeble (2006) for

4It would be pretty cool if we could, though. Imagine being able
to just stand on any object and move around.
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being too general and therefore not grasping essential dis-
tinctions between fundamentally different social interactions.
Keeble (2006) illustrates this with a boy lost in the jungle.
In the first case, the boy breaks branches by accident and is
found by a search party that spots and follows the trail. In the
second case, the boy thinks “they will send people looking
for me, I better break branches to leave a trail” and is found
by a search party that spots and follows the trail. In both
cases, the behavior of the boy transmits information through
which the search party finds him. Both cases could fall un-
der the label ‘communication’ when using definitions (i) or
(ii). The essential difference, however, lies in the intentions
of the boy. Keeble (2006) argues that in the cases where we
have to make an ethical assessment of behavior a definition
is necessary that encompasses the psychological differences
between the cases. For example, consider the situation where
the boy in the second case would ‘lie’ by making a false trail
and thereby misleading the search party. The trails could
even be identical in all cases, what matters is the intention.
The proposed definition for ethical contexts of communica-
tion is therefore: “Communication is an intentional act to
make something known to a certain receiver” (Keeble, 2006,
p.183). This definition will be too limited for some contexts:
we might want to categorize electro-chemical signaling be-
tween single celled lifeforms as communication, even though
we would not grant them ‘intentionality’. However, because
are trying to judge what can be considered the ‘right’ com-
munication with a human, the intentional definition of com-
munication is useful. But what would we consider to be the
intention of a chatbot? Without going to deep into the philo-
sophical aspects of this question, I would want to propose
that the intention of a chatbot system is something that we
can transfer to the system as a programmer.

This is specifically done through the reward function, while
hoping there is no perverse instantiation of the intention. If
we have the intention to make a clown that makes us laugh
we can reward sudden changes on the ‘happy’ scale, while
avoiding increases on all other scales. Or maybe we could
analyze the mixture of emotions evoked by a certain stand up
comedian to collect a specific ‘emotional profile’ and transfer
this to the system. This way we can give the system a ‘goal’
as an attractor for the learning process.

I want to defend the idea that this system is capable of com-
munication, even for the more restricted intentional defini-
tion. To convince the reader of that position, consider the
following thought experiment. Let’s imagine the situation
where I see a woman walking on the street and decide to
whistle to her to communicate that I find her attractive. Be-
sides the fact that this could be considered unwanted or inap-
propriate from the perspective of the female, this behaviour
is communication under all four definitions of communica-
tion. However, if I would program a computer to whistle at

random moments (and build without the intention to commu-
nicate attractiveness) this behavior will no longer be commu-
nication under the intentional definition of behaviour. If this
system is build with the intention of chasing away birds, it
might be the case that the system whistles by coincidence at
the moment a woman walks by. While the situation might be
exactly the same in both cases, the second case would not be
considered offensive communication. However, if I program
a system that uses image recognition to spot a certain type
of woman I find attractive and that would whistle while they
walk by, we can imagine woman to find this offensive and
sexist again. The system will be considered to communicate
my intentions as a programmer, even though I am not present
myself and even though the system itself is not considered to
have intentions. It might even be the case that I would not
have whistled at a specific woman, where the system might
do so; the act will still be considered to communicate a mes-
sage to the woman. I have ‘transferred‘ my intentions to the
system, and thereby the system is capable of communication.
The implementation of my intended communication might
be successful or not in transferring the message, but that is
the case with every act of communication.

Another way we can influence the transfer of intentions from
the programmer to the system is through the vocabulary that
we give the system. By restricting the system to a specific
vocabulary we will give direction to the ‘intentional acts’
that the system can implement and that the user interacting
with the system can perceive as attempts ‘to make something
known’. For example, imagine we would give the system a
limited vocabulary of Tarot-cards, a medieval oracle consist-
ing of 78 cards with images that describe archetypical situa-
tions. These images have all sorts of emotional and intellec-
tual associations that heavily influence the intentions that can
be transmitted. It would be able convey a very different set
of intentions as compared to giving the system a vocabulary
that consists of, lets say, a set of nature photography.

Designing a reward function and selecting a vocabulary is a
subject that is highly dependent on the context the system is
implemented in and goes beyond the scope of this paper. For
this architecture, I propose a general approach that weighs
the emotions differently and rewards surprise and happiness
while punishing actions that generate sadness, fear, disgust
or anger. This way the behavior is both restricted enough
as not to unintended traumatize potential users, while at the
same time offering enough contrast to test a proof of concept.

Training on different individuals

While the architecture we have described so far should in
theory be able to learn about the correlation between ac-
tions (showing images) and the response to these actions (an
emotional response expressed through a facial expression), it
might be useful for the system to learn to discern between
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different types of people. To make this clear, let’s do a little
thought experiment. Assume we can test the chatbot on Alice
and that she is willing to spend enough time with the chatbot
in order for it learn about her preferences. The chatbot dis-
covers that she enjoys images of small puppies and dislikes
snakes. Now, after hearing Alice talk about how impressed
she was by the performance of the chatbot, Bob wants to
experience the chatbot as well. But Bob is severely asth-
matic which will be triggered by dogs. In addition to this,
Bob is a long time reptile lover and takes care of a medium
sized python in a terrarium at home. The network that has
been trained on the character of Alice will make the wrong
predictions for Bob and the weights of the network will be
trained into a different direction. The result of the interaction
with Bob will be that the chatbot is forced to explore a new
direction that both Alice and Bob will enjoy (e.g. it turns
out that both Alice and Bob enjoy flowers). This situation
could cause the network to generalize better if it finds out that
certain clusters of images have a high probability of evok-
ing opposite feelings, and should be better avoided. But it
could also be a cause of lowered performance or overfitting.
Lowered performance can be a side effect of the generaliza-
tion and is caused by learning from anomalies that generate
contradictory signals which push the system towards finding
some middle ground that satisfies neither of the cases really
good. Overfitting could happen if the network tries to figure
out what part of the facial expression of Bob predicted that
he disliked puppies and liked snakes. This behavior could
then be falsely attributed to an emotion Bob coincidentally
showed with a very low intensity (e.g. surprise with a level
of 0.1). The model makes conclusions that are actually noise.
If the chatbot would then coincidentally encounter this same
expression in Alice, it could conclude that this is probably the
right moment to show Alice a snake. This example shows
that training on more than one person can complicate the
situation. One solution to this problem could be to let the
chatbot start from scratch for every individual. That way,
the chatbot will a completely personalized. The downside of
this approach is that we might easily generate a lot of data
when multiple users experiment with the system, data from
which we would like to learn. Another approach that might
be able to take advantage of the accumulation of data from
different individuals without risking lowered performance or
overfitting is to try do adapt dynamically to the characters of
the users.

Adapting to personalities

In the example with Alice and Bob, we gave an informal
description of the expression of different personality types.
Alice and Bob can be shown the same image a, but there
reaction could result in a both a negative reward or a positive
reward, depending on their personality. We can define this
more formal as a function f (at) = E[rt], where personality

is a function f that maps specific clusters of images to the
expected reward, which is a reaction to a certain action a.
Discerning between different personality types can be done
by clustering the data, such that finding a personality type
is the question of finding clusters of images a that typically
evoke a response with reward r for that type of personal-
ity. When the chatbot is tested on several persons, it will
have gathered all these observations in the buffer, stored as
tuples (st, at, rt, st+1). Every action at is a n-dimensional vec-
tor, but for simplicity I will illustrate the problem for a two-
dimensional vector. We assume personalities to react similar
to a certain cluster of images in a certain semantic neighbor-
hood. To illustrate this hypothesis I generated and plotted a
small set of data points with R (R Core Team, 2020). Look-
ing at the most left pane of figure 6, we see the 2 dimensions
of our action a represented as the x and y axis of the figure.
The shapes of the markers (circles and squares) represent two
distinct clusters of images. Let’s assume that the cluster of
squares represents images that most people liked (e.g. im-
ages of flowers with a relaxed sentiment) and the cluster of
circles represents images that some people liked, but others
disliked (e.g. images of snakes with an excited sentiment).
This was observed by either a positive reward r (represented
as a blue color) or a negative reward r (represented as a red
color) for a given action a. While the cluster of circles might
confuse the model if we simply feed it all the data, we can use
the extra dimension of the reward to split this cluster. Based
on our assumption of the correlation between personality and
reactions, this split is expected to correlate with two different
personality types we will denote as A and B. If we rotate the
data as shown in the middle and right pane of figure 6, we
can see how it is possible to split the cluster of circles into
two distinct groups. These groups can now be used to create
filters for the dataset. Filter A removes the data points that
belong to the cluster of circles with a positive reward, filter
B removes the data points from the cluster of circles with a
negative reward. With this approach we can train different
versions of the algorithm, where the algorithm with filter A
is expected to have better results with personality A and al-
gorithm B will perform better with personality B. The ques-
tions that need to be addressed with this approach are: how
to let the system generate adaptive filters and how to find out
which filter to apply. To answer these questions, we can use
the theory of Complex Adaptive Systems. This approach can
help the system to specialize into niches for different person-
alities.

Complex Adaptive Systems

Ecosystems, universities, biological cells and markets can
all be characterized as complex adaptive systems. A com-
plex adaptive system shows complex behavior that emerges
from “nonlinear spatio-temporal interactions among a large
number of component systems at different levels of organiza-
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Figure 6. Clustering personality

tion” (Chan, 2001). One characteristic they all have in com-
mon is the presence of hierarchical arrangements of bound-
aries and signals (Holland, 2012). For example, universi-
ties have departmental hierarchies with emails as signals.
Biological cells have cell membranes and proteins as sig-
nals. Markets have traders and orders as signals. Holland
(2012) defines four characteristics that are relevant to all sig-
nal/boundary systems:

(i) diversity

(ii) recirculation

(iii) hierarchical niches

(iv) coevolution

Holland (2012) illustrates these four characteristics with ex-
amples from the tropical rainforest.
Diversity. The diversity of flora and fauna in a rainforest is
abundant. A 4-square mile of rainforest contains about 1500
flowering plants, 750 species of trees, 400 species of birds
and 150 species of butterflies (Bradford, 2018). Interestingly,
the heavy rains cause the soil to be impoverished. What is the
reason this impoverishment does not result in a few species,
struggling for survival? A main reason is that species spe-
cialize and will use resources passed on from other species.
Recirculation. The diverse species have fine tuned their in-
teractions in such a way that nutrients are kept from being
lost to the ground. Leaves will form basins of water, wherein
insects and frogs lay their eggs. The waste products of the
larvae will provide nutrients useful to the plant. In this ex-
ample we can notice how the diversity of specialized species
plays a role in the recirculation of resources. This recircula-
tion induces a multiplier effect, just like recirculating money
in a local economy can stimulate growth.
Hierarchical niches. Niches generate local use of signals
and resources. There are niches within niches with an hi-
erarchy of enclosing boundaries. They have semi-permeable
boundaries, that allow passage of some signals and resources,

[(c1, r1)]

[(c1, r1), (c2, r3)]
[(c1, r1), (c3, r2)]

Figure 7. Hierarchical niches through filters

but block others. Niches can be regions like the forest floor
or the canopy layer, which in turn can be located into larger
niches like the moist seasonal rainforest or the cloud forests
at higher elevations.

Coevolution. Examples of coevolution are some insects
and flowers that have evolved characteristics that make a per-
fect fit. The Bee orchid mimics certain insects so well, that
they will try to copulate with the flower and pollinate the
flower during the process. The diversity of the species offers
opportunities for complex interactions, which can specialize
over time.

With the help of this framework, we can analyze the problem
of training on different individuals. We want to avoid to end
up with an impoverished environment in which the chatbot
only appeals to a general type of user. Instead, we want a
diverse system to coevolve that appeals to a diverse range
of personalities. Holland (2012) propose the simple mathe-
matical model of tagged urns to facilitate the generation of
diverse, specialized niches.
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Tagged Urns

Tags are address-like regions in signals that can be used to set
up connections in signal/boundary systems (Holland, 2012).
They determine which rules in a system process the tagged
signal. This can be implemented as simple if...then rules.
Urn models are used to describe stochastic processes, typi-
cally described with balls in urns and the probability of pick-
ing a ball of a certain color from an urn. An urn also provides
a boundary, where a certain process will take place inside the
boundaries of the urn. (Holland, 2012) implements this sys-
tem of tagged urns as a mathematical system that can realize
the four characteristics of signal/boundary systems. Every
urn has a filter that reacts to certain parts of the tags, while
other parts can be ignored. This can be compared to the semi-
permeable boundaries in a cell: some chemicals are accepted
and can pass, other chemicals are blocked. In our context
these tags are created with action clusters C = {c1, . . . , cn}

(e.g. the round and square markers in figure 6). These action
clusters can be split into clusters of rewards R = {r1, . . . , rn}

(e.g. the red or blue colors in figure 6). A tag is a pair of
action-reward clusters, for example, [(c2, r1)] would be a tag
that assigns an observation to action cluster c2 and reward
cluster r1 which might be equivalent to the round and blue
data point in our example. This system can assign a tag to
every observation in the buffer. A tagged urn will now pro-
cess a certain collection of tags, but filter out other tags.

This approach generates boundaries that create niches. These
niches stimulate diversity because instead of one model that
accepts all observations and processes all signals like an om-
nivore, we generate specialized models that process only a
certain type of “food”, like herbivores. The filters also allow
hierarchies to evolve. The most generic filter can filter out
just one specific action-reward pair and accept everything
else. From this generic filter more specialized filters can
be derived by adding extra filters. These specialized filters
can be considered to be “embedded” inside the generic filter.
Only signals that pass the first boundary of the generic filter
will be able to pass the specialized filter, which is illustrated
in figure 7. Again, this can be compared to a cell where the
outer boundary is semi-permeable to more diverse chemicals
(a generic filter) while the inner structures of a cell accept
only a subset of the chemicals (a specialized filter) that have
already passed the outer boundary. The characteristic of re-
circulation can be recognized in the presence of the replay
buffer. An action generated by one model is stored into the
buffer and can be re-used by another model that did not gen-
erate that specific action, but the action-reward pair matches
the filter. This setup stimulates coevolution, where both the
chatbots within a certain niche can coevolve, but also the ex-
posure to certain personalities in the environment will stim-
ulate the generation of new chatbot “species” that specialize
in processing the specific signals (“food”) that these person-

alities generate.

Unsupervised clustering

The generation of filters is an unsupervised clustering prob-
lem. There are multiple approaches to solve this, and I will
discuss k-means clustering and infinite mixture models.
k-means clustering. A simple and commonly used cluster-
ing algorithm is k-means clustering (Bishop, 2006). Suppose
we have observations {x1, . . . , xN} of d-dimensional vari-
ables. The task is to find K clusters C = {c1, . . . , ck}. A clus-
ter c j ∈ C can be defined as a group of points whose mutual
distances are small, compared to points outside of the cluster.
This is formalized with the introduction of a center µ j that is
associated with the jth cluster. The algorithm initializes a
random set of k meansM = {µ1, . . . , µk} and associates ev-
ery observation n to the closest cluster c j ∈ C that minimizes
the Euclidean distance ‖xn − µ j‖

2. After this, every mean
µ ∈ M is recalculated for all observations assigned to a clus-
ter c j with µ j = 1

|c j |

∑
xi∈c j

xi which comes down to taking the
mean value of all points in a cluster (hence the name k-means
clustering). After the update, the algorithm will start again
with associating observations to the closest updated center.
This process continues until there are no more changes in
the association, or until another threshold is reached. While
this relatively simple algorithm often gives good results, the
downside is that we need to predefine the amount of clusters.
Infinite Mixture Model. A more complex approach is a
probabilistic modeling approach named the Infinite Mixture
Model. This is a generalization of the Gaussian Mixture
model, which is a combination of more than one Gaussian
distribution. An example of this type of mixture would be
the presence of two subpopulations within a larger popula-
tion, e.g. the distribution of length for a population that can
be split into subpopulations of male and female, both with
a different mean and standard deviation (Bishop, 2006). A
finite mixture model can be written as (Ge, 2020; Ge, Xu, &
Ghahramani, 2018; Rasmussen, 2000):

(π1, . . . , πK) ∼ Dirichlet(K, α)
µk ∼ Normal(µ0,Σ0),∀k

z ∼ Categorical(π1, . . . , πK)
x ∼ Normal(µz,Σ)

(6)

Here, π1, . . . , πk are the mixing weights for the different clus-
ters. They follow a Dirichlet distribution of K dimensions,
which is a multivariate generalization of the beta distribu-
tion (Bishop, 2006) where values drawn always have a value
between 0 and 1. If π1 = 0.2, this will mean that the frac-
tion of data that is part of the first cluster will be 0.2. The
values of all π should therefore sum to 1, because combining
all clusters will give us all data, which is accomplished by
the Dirichlet distribution. Every cluster k ∈ K has a mean µ
that is assumed to follow a (multivariate) normal distribution
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with mean µ0 ∈ Rd and covariance Σ0 ∈ Rd×d for data with
dimension d. Note that this model describes the statistical
parameters that define the distribution as distributions them-
selves. z is a categorical distribution, that picks a cluster k
based on the mixing weights. Finally, x is an observation
that is belongs to selected cluster z and is assumed to follow
a (multivariate) distribution, with the parameters belonging
to its cluster µz and Σ. As described by Rasmussen (2000),
the variance Σ can be given a Gamma prior as well.

This finite mixture model for K clusters can be generalized
for an infinite dimensionality K = ∞, by which we can obtain
the construction of what is called the Chinese restaurant pro-
cess (Ge, 2020; Rasmussen, 2000; Wikipedia contributors,
2020). This is a process analogous to putting customers at
tables in a Chinese restaurant. The restaurant has an infinite
amount of tables, each with an infinite capacity. After the
first customer is seated, the next customer will either sit at
the same table, or a next table. Each customer will choose to
either join an occupied table with a probability proportional
to the amount of people already sitting at a table. This has the
consequence that tables that already have a lot of customers
will more likely attract new people than tables with just a
few customers. Therefore, new clusters are created when a
lot of observations are made (new customers arrive) while
the generation of new clusters is slowed down because of the
attraction of existing clusters.

Combining the Chinese restaurant process with the finite
mixture model results in the infinite mixture model. This ap-
proach can be implemented with probabilistic programming.
The elegance of such an approach is that it allows us to give a
vary vague description of assignments through distributions.
All we need to assume is that a certain variable follows a
certain distribution, while even the parameters of this distri-
bution can be defined vaguely as following another distribu-
tion. An advantage over k-means clustering is that we don’t
have to specify the amount of clusters. By sampling from
this process with a Sequential Monte Carlo sampler, we can
estimate all the variables based on the observations we make
and estimate the amount of clusters. This process is imple-
mented in the Turing package (Ge et al., 2018) for the Julia
language (Bezanson, Edelman, Karpinski, & Shah, 2017).

Adaptive niches

Tag creation. Utilizing one of these two methods is
enough to adaptively create filters. The process of creating
tags has three steps: (i) Assign all actions a in the buffer to
a cluster c ∈ C (ii) For every cluster c, check if there are
clusters of rewards r ∈ R (iii) Assign tags C × R to every
observation. After the tags have been generated, we can cre-
ate a population of filters by sampling from the powerset of
tags where the length of the filter is proportional to the total
number of tags.

person tags
1 0011000
2 0011010
3 0010110
4 0010111
filter 1 ###10##
filter 2 ###01##

Table 1
filter creation

Filter creation. We can guarantee during the process of
tag creation that every cluster that is split into additional
reward clusters represents a significant amount of observa-
tions. However, as the amount of data grows, sampling a
combination of filters from the powerset is not guaranteed to
fit with a personality. We can think of the amount of pos-
sible combinations as a tree, where every cluster has three
options: don’t add a reward split, add the first reward clus-
ter or add the second reward cluster. This gives us 3|C| pos-
sible combinations of tags into a filter. Therefore, we will
need a mechanism for the selection of the filters that gen-
erate niches. As a mechanism for the selection and evolu-
tion of niches, a multi-armed bandit approach is suggested
by Holland (2012). In the multi-armed bandit problem, a
gambler is confronted with a slot machine and has to decide
which arm will pay the most money. In the case of a two-
armed bandit with arm I paying €1 with a probability of 0.5
and arm II paying €1 with a probability of 0.25, the player
will maximize his profit by playing arm I. Yet, if the player
does not know the probabilities, what is the best strategy to
maximize his expected return? This situation is similar to the
question, which niche should a “species” occupy if it wants
to flourish? Playing both arms equally has a cost of missed
opportunity of (0.5 − 0.25)n after playing n times. The opti-
mal strategy is to play both arms, but to allocate trails to the
arms that have the highest observed average payment at an
exponentially increasing rate (Holland, 2012). Translated to
the domain of the evolution of niches in a signal/boundary
system, each of the arms is a niche that supplies resources
for the replication of the agent. We create a selected popu-
lation of filters that has to reproduce every generation, while
their chance of reproduction is proportional to their fitness.
This gives evolutionary pressure to the generation of filters:
the filters that are observed to be effective in the environ-
ment are rewarded and can reproduce, while the filters that
do not work out in the environment are disregarded. And the
more effective a filter becomes, the more resources it gains
to create hierarchical niches to reproduce itself and create
“offspring” that specializes further within this niche. After
we have a generated a collection of tags through a clustering
technique, each cluster backed up by a substantial subpop-
ulation, we can count the combinations of tags that worked
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for a single person during a session with the chatbot as a
sample of a successful filter. The observation of a success-
ful filter increases the chance of this filter entering into the
limited population of filters. This process is illustrated in
table 1. Here, we use a binary notation for the filters, where
every cluster has a position on a binary string. In this ex-
ample we show tags for seven clusters. For every cluster,
a 0 means a negative reward, and a 1 means a positive re-
ward. We can see that after the observation of four persons,
all tags start with 001. This denotes that everyone disliked
the first two clusters, and everyone liked the third cluster. At
the fourth cluster and fifth cluster we can see that the group
is split into two: person 1 and 2 liked the fourth cluster, and
disliked the fifth (00110) while person 3 and 4 disliked the
fourth cluster and liked the fifth (00101). Four the last two
clusters, three out of four agreed on the cluster. This im-
plies that for the first three positions, we will not create a
filter, because everyone agrees on this cluster. We denote
this in the filter as #. Based on observations for cluster 4 and
5, we can create the filters ###10 and ###01. These filters
split the groups into 50-50 percent of the observations. The
last two clusters might become a possible location for a fu-
ture filter, but for now we regard this as an anomaly and not
enough reason the create an additional split for this cluster.
This way of selecting filters is based on the selection of the
clusters that yield the highest information gain. This intu-
ition is formalized by Shannon with the formulation of the
Shannon entropy H = −

∑C
i=0 pilog2(pi) (Shannon, 1948).

Splitting a dataset on a certain probability pi for every el-
ement i in class C for our data will give us an information
gain of I(Y, X) = H(X) − H(X|Y). In other words: knowing
property Y will reduce the entropy on the dataset X by I. We
can calculate that splitting on cluster 4 or 5 gives the highest
information gain. To be exact, the entropy of the complete
dataset in table 1 is 0.52, and after splitting on cluster 4 this
is reduced to 0.14, while splitting on cluster 6 would reduce
entropy to 0.39. Note that after more observations filter 2
turns out to be selected a lot, this niche will grow and allow
for the hierarchical creation of new filters within this niche.
For example, filter 2 could become specialized as ###01#0
and ###01#1 if both the tags for person 3 and person 4 turn
out to be equal successful and are encountered a lot. This
information mean can be used as a measure of the “fitness”
for every filter, something we can use to decide which filters
can be reproduced for a next generation of filters. We can
train every niche on the same data, so the niche for filter 2 is
trained on all data generated by person 3 and 4, but ignores
the data generated by person 1 and 2 if the actions was tagged
to belong to cluster 4 with reward 1 or cluster 5 with reward
0. Exploration of new domains is done both by the stochastic
noise N that is used by the actor from the DDPG, but can
also be added through “mutation” of the “genes” of the filter
for a small fraction of the offspring.

Final architecture

With the combination of

(1) unsupervised clustering of action-reward pairs to cre-
ate tags

(2) selection of filters through a evolutionary algorithm

we can generate a population of filters that generates hierar-
chical niches that recirculate actions to learn from. Our sin-
gle DDPG actor (as shown in figure 4) has been changed into
a multi-agent system that consists of a hierarchical niches
of actors (as shown in 7) which adapt to the personality of
the user. In the hierarchical niches of this signal/boundary
system, a diversity of agents can coevolve along with the
personality type of the user it interacts with. Because the
heavy lifting of the generation of tags and training of mod-
els can be done mainly offline, this process can generate a
population of pre-trained chatbots with different “personali-
ties”. If a user interacts with this multi-agent chatbot system,
the system can take a short time to sample which of the pre-
trained personalities of chatbots would fit the personality of
the user the best, and let this agent take over the interaction
while the rest of the agents that occupies the same niche still
learns from the interactions. Here, a probabilistic approach
like Bayesian updates of a prior distribution would be both
an approach that is able to pick the most likely candidate,
even with a very small sample size.

Generate meaning

The aim of this architecture is to generate meaningful inter-
actions. An interesting question is, why we would expect a
model such as this to generate something meaningful. Af-
ter all, we never “tell” the architecture what the seven num-
bers of the recognized emotions “mean”. The system just
receives a sequence of seven numbers and starts to make cal-
culations with them until it outputs 92 numbers. Again, we
never tell the architecture what these 92 numbers ought to
mean. When the architecture begins to make its calculations,
the layers of the DDPG network are initialized with random
weights. This means that, while consistent, the system starts
with making random calculations that transform an input of
seven numbers into an output of 92 numbers. Hofstadter
(2007) describes how the philosopher John Searle ridicules
the idea that a machine could “think”. Searle does so by
looking at a Turing machine (and all computers are special-
ized versions of a universal Turing Machine) that, in order to
qualify as a Turing machine, only needs a tape with cells to
which a head can read and write and instructions telling the
head under which conditions to move or read/write. Because
a Turing machine can in principle be made from any ma-
terial, Searle creates imaginary Turing machines from toilet
paper and pebbles, or from beer cans. He then continues to
ridicule the idea of “thinking toilet paper” or that a system
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of interacting beer cans might “have experiences”, suggest-
ing that in such a system there would be one particular beer
can that would pop-up with the words “I am thirsty” written
on it. As Hofstadter (2007) says:“it does sound preposter-
ous to propose ‘thinking toilet paper‘”. However, he con-
tinues to critique Searle for deliberately creating these silly
examples and thereby missing the essence of what is going
on in these systems. The most important mistake that Searle
makes, according to (Hofstadter, 2007), is that Searle claims
that the experience in his beer-can brain model is localized in
one single beer can. (Hofstadter, 2007) states that no serious
brain researcher would propose a model of experiences that
is localized in a single braincell. From here follows the con-
clusion that, if we would seriously try to think of how such a
beer can model might be implemented, we would have to ac-
knowledge that the “experiences” of the model would not be
localized phenomena, but rather be vast processes involving
trillions of beer cans.

The point I am making here is not that the architecture of
the chatbot is able of something that we should consider to
be comparable to the thinking or experiencing we can do as
humans. To start with, our brain consists of approximate 86
billion neurons (Voytek, 2020) which makes it many levels
more complex than our neural network. The question if an
artificial system could be capable of “thinking” or “experi-
encing”, even to a certain degree, is an interesting question
but beyond the scope of this paper. Rather, what I am trying
to point out is that to understand how a machine learning
model can “make sense” of the world around us it we should
not focus on isolated parts of the system but consider the
system as a whole. This means that we should picture a vast
network of interconnected weights and calculations as that
stores the “understanding” of our reactions and is “figuring
out” what would be a meaningful response. I will refer to
this idea as the notion of “distributed qualities”.

In addition to these “distributed qualities” it is useful to con-
sider how the paradigm of machine learning has shifted the
role of the programmer. A non-machine learning approach
would think of a software system as something that inputs
rules and data and outputs answers. In this paradigm, the
programmer would think of all the conditions under which
a certain action should be taken, maybe modelled from the
actions of an expert. This is not very efficient because of the
large amount of conditions in most contexts. The machine
learning paradigm has therefor shifted to a system that inputs
data and answers and outputs rules (Geisslinger, 2019). I will
refer to this paradigm as the notion of “learning rules”. This
makes the system much more flexible to adapt to new condi-
tions. The architecture proposed in this paper defines the data
(emotion recognition) and the ‘right‘ answers (through the
reward function, e.g. a good action is an action that makes
you happy and surprised). What is the set of rules necessary

to accomplish this is exactly what the system is build for to
figure out. It could discover that when someone looks a bit
sad with a slight touch of fearfulness (or any combination of
emotions), the best approach is be to find a picture that mixes
a slightly sad sentiment with something cute. And it could
figure out that this does not work for everyone and that for
some clusters of personalities another approach works better.

These two notions (distributed qualities and learning rules)
can be connected to the work of Wittgenstein with regards to
meaning, or at least how I understand Wittgenstein. When
Kripke (2013) discusses Wittgenstein he remarks that he
probably does not understands Wittgenstein correctly and his
remarks should be understood as “neither Wittgenstein’s ar-
gument nor Kripke’s: rather Wittgenstein’s argument as it
struck Kripke” and I would like to adhere to this disclaimer
as well. In his ’Philosophical Investigations’ Wittgenstein
describes how a possible perspective on learning language
and the meaning of words is that the meaning of a word is the
object for which it stands (Wittgenstein, 2009). An important
part of acquiring the meaning of words would then consist
of pointing towards an object while uttering the word, some-
thing he calls the ‘ostensive teaching of words‘. Wittgenstein
shows how this ‘ostensive teaching‘ itself has to be embed-
ded in what he calls a ‘language game‘, with its own rules.
A problem he points out is that “an ostensive definition can
be variously interpreted in every case” (Wittgenstein, 2009,
§28). How would a child know, when someone is trying to
teach the definition of the word ‘two‘ and points towards two
nuts while saying “That is called ‘two‘”, what it is that one
wants to call ‘two‘? How would it have to know that some-
one means the number and not this group of nuts? We would
first need to define the use of the word ‘number‘ with other
words. “And what about the last definition in this chain?”
asks Wittgenstein us (Wittgenstein, 2009, §29). His con-
clusion is that we will first need to learn the role a word is
supposed to play in the language (Wittgenstein, 2009, §30).
He compares this to a game of chess: when someone shows
the king in chess and says “this is the king”, that does not
tell someone how to use the kind unless he already knows
the rules of the game (Wittgenstein, 2009, §31). Wittgen-
stein show us that the “meaning of a word is its use in the
language” (Wittgenstein, 2009, §43). This means that we
can never perfectly define the meaning of something, but we
need to observe the complete ‘language game‘ that is being
played in a certain context. By observing how this game is
played, we can learn the rules of the game. The meaning
of language is completely embedded in behavior, gestures,
actions. This notion of meaning resembles closely the con-
cepts of distributed qualities and learning rules that we see in
machine learning. The chatbot engages in a ‘language game‘
that consists of showing pictures to evoke emotions. The in-
tentions the system is trying to communicate to the receiver
are the transfered intentions of the programmer. The system
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does not need to know the meaning of the images nor of the
emotional reactions to the images: it just observes the ‘rules‘
of the ‘languag game’ that is being played. The system can
observe that the way it uses a certain image, evokes certain
responses and this use explains the meaning of an image: this
is an image that can be used to evoke a response we consider
to be desireable.

This perspective on meaning shows us where the weak points
of the system can be found. Just like a child might be con-
fused when we say “that is called two”, the chatbot system
might be “confused” initially when it observes a situation
because it has to aquire a network of rules in order to inter-
pret a single action. While the system will, in principle, be
able to learn the correlation between actions and emotional
responses that follow and action, it might take a long time be-
fore it learns our rules. We might imagine a language where
small groups of nuts are called “two” and there would be no
way to figure this out based on just one example. If the time
it takes to learn exceeds the patience of the user such that
the user stops to interact with the system the system won’t
be able to learn anything at all. That’s why the extra layer of
clustered personalities might be essential to gather enough
observations to learn rules that make sense in most cases and
to finetune these rules for specialized niches of people in-
stead of learning everything from scratch every time it en-
counters a new person.

So, even though it is reasonable to expect the system to be
able to learn (at least in principle) the correlations between
the semantic vector of an image and the emotional response
it evokes in different types of personalities, it migth be chal-
lenging to finetune the system in such a way that this learn-
ing is done within a reasonable amount of time. There are
hyperparameters in

1. the DDPG algorithm, e.g what we defined as the func-
tion approximators θµ and θQ are implemented as neu-
ral network architectures themselves, with hyperpa-
rameters like the amount of neurons

2. the unsupervised clustering for tag creation, e.g. using
k-means or an infinite mixture model, each with their
own hyperparameters

3. the evolutionary algorithm for filter creation, e.g.
thresholds for the information gain, the size of a pop-
ulation and mechanisms for mutation and selection of
the next generation

4. the sampling process that picks the best actor from
the current population to interact with a user (e.g.
Bayesian learning)

Finetuning these is mainly a trail-and-error driven practice
guided by some general rules of thumb and goes beyong the
scope of this paper. In addition to finetuning the hyperpa-

rameters, it is possible to replace complete aspects of the ar-
chitecture. For example, the emotion recognition CNN that
generates the input for the DDPG could be extended with
other observations (e.g. brainwaves measured by a portable
e.e.g.-device) or augmented with natural language process-
ing. Also, the output could be extended to include single
words, or to combine sequences of more then one image. Ob-
viously, all these extensions would increase the complexity
so a first step would be to implement the most basic architec-
ture as illustrated in figure 4. Additional research will have
to show whether this type of chatbot will actually generate
conversations that are perceived as meaningful. Humans in-
teracting with the system could feel that the chatbot is able to
touch them emotionally and is able to figure out patterns that
actually work, or could perceive the attempts of the chatbot
as random actions that might evoke a feeling, but no more
then flashing a random sequence of images would achieve.

A final remark I want to make here, is on the possible con-
texts this system could be implemented in. In general, this
architecture could be usefull in every context where emotions
are part of the communication. This could both be as part of
a human-human interaction where the system augments the
communication of the humans or as a human-computer in-
teraction. An example of the augmentation of human-human
interaction is a therapeutic context where it might be helpful
for the client to be in a specific mood in order to take the
most advantage of the therapy. This system could assist dur-
ing a therapy session by both helping the therapist in sensing
tension (even if the client might unconsciously try to mask
this tension) and by intervening with images that help to re-
lax the client. An example of a human-computer interaction
could be an application that helps people with insomnia to
fall asleep (which is usefull because of the 24/7 availability of
the chatbot). Other contexts could range from chatbots that
assist elderly people that are suffering from cognitive decline
to business contexts where emotions play a role, for example
in the handling of customer complaints, decision making or
sales.
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